On the existence of three solutions for the Dirichlet problem on the Sierpinski gasket

被引:27
作者
Breckner, Brigitte E. [1 ]
Repovs, Dusan [2 ]
Varga, Csaba [1 ]
机构
[1] Univ Babes Bolyai, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
[2] Inst Math Phys & Mech, SI-1001 Ljubljana, Slovenia
关键词
Sierpinski gasket; Weak Laplacian; Dirichlet problem on the Sierpinski gasket; Weak solution; Critical point; Minimax theorems; Mountain pass theorems; CRITICAL-POINTS THEOREM; NONLINEAR ELLIPTIC-EQUATIONS; FRACTALS;
D O I
10.1016/j.na.2010.06.064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply a recently obtained three-critical-point theorem of B. Ricceri to prove the existence of at least three solutions of certain two-parameter Dirichlet problems defined on the Sierpinski gasket. We also show the existence of at least three nonzero solutions of certain perturbed two-parameter Dirichlet problems on the Sierpinski gasket, using both the mountain pass theorem of Ambrosetti and Rabinowitz and that of Pucci and Serrin. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2980 / 2990
页数:11
相关论文
共 21 条
[1]  
ANELLO G, MULTIPLE SOLUTIONS E
[2]  
[Anonymous], 1990, NONLINEAR FUNCTION A
[3]   A nondifferentiable extension of a theorem of Pucci and Serrin and applications [J].
Arcoya, David ;
Carmona, Jose .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 235 (02) :683-700
[4]   Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities [J].
Bonanno, Gabriele ;
Candito, Pasquale .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (12) :3031-3059
[5]  
BRECKNER BE, ANAL APPL SING UNPUB
[6]  
Chen H, 2009, ACTA MATH SCI, V29, P232
[7]  
Falconer K., 2003, FRACTAL GEOMETRY MAT, DOI DOI 10.1002/0470013850
[8]   Semilinear PDEs on self-similar fractals [J].
Falconer, KJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 206 (01) :235-245
[9]   Non-linear elliptical equations on the Sierpinski gasket [J].
Falconer, KJ ;
Hu, JX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 240 (02) :552-573
[10]   Multiple solutions for a class of nonlinear elliptic equations on the Sierpinski gasket [J].
Hu, JX .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2004, 47 (05) :772-786