Deep Residual Network for Single Image Super-Resolution

被引:5
作者
Wang, Haimin [1 ]
Liao, Kai [2 ]
Yan, Bin [1 ]
Ye, Run [1 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu, Sichuan, Peoples R China
[2] China Railway Southwest Res Inst Co Ltd, Chengdu, Sichuan, Peoples R China
来源
ICCCV 2019: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON CONTROL AND COMPUTER VISION | 2019年
基金
中国国家自然科学基金;
关键词
Super resolution; Convolutional neural network; Global residual learning and local residual learning; Multiscale reconstruction;
D O I
10.1145/3341016.3341030
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a Deep Residual Network for Single Image Super-Resolution (DRSR). We build a deep model using residual units that remove unnecessary modules. We can build deeper network at the same computing resources with the modified residual units. Experiments shows that deepening the network structure can fully utilize the image contextual information to improve the image reconstruction quality. The network learns both global residuals and local residuals, making the network easier to train. Our network directly extracts features from Low-Resolution (LR) images to reconstruct High-Resolution (HR) images. Computational complexity of the network is dramatically reduced in this way. Experiments shows that our network not only performs well in subjective visual effect but also achieves a high level in objective evaluation index.
引用
收藏
页码:66 / 70
页数:5
相关论文
共 20 条
  • [1] Accelerating the Super-Resolution Convolutional Neural Network
    Dong, Chao
    Loy, Chen Change
    Tang, Xiaoou
    [J]. COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 : 391 - 407
  • [2] Image Super-Resolution Using Deep Convolutional Networks
    Dong, Chao
    Loy, Chen Change
    He, Kaiming
    Tang, Xiaoou
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) : 295 - 307
  • [3] Learning a Deep Convolutional Network for Image Super-Resolution
    Dong, Chao
    Loy, Chen Change
    He, Kaiming
    Tang, Xiaoou
    [J]. COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 : 184 - 199
  • [4] He K., 2016, IEEE C COMPUT VIS PA, DOI [10.1007/978-3-319-46493-0_38, DOI 10.1007/978-3-319-46493-0_38, DOI 10.1109/CVPR.2016.90]
  • [5] Identity Mappings in Deep Residual Networks
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. COMPUTER VISION - ECCV 2016, PT IV, 2016, 9908 : 630 - 645
  • [6] Huang Jia- Bin, 2015, P IEEECVF C COMPUTER, DOI [DOI 10.1109/CVPR.2015.7299156, 10.1109/cvpr.2015.7299156, 10.1109/CVPR.2015.7299156]
  • [7] Caffe: Convolutional Architecture for Fast Feature Embedding
    Jia, Yangqing
    Shelhamer, Evan
    Donahue, Jeff
    Karayev, Sergey
    Long, Jonathan
    Girshick, Ross
    Guadarrama, Sergio
    Darrell, Trevor
    [J]. PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), 2014, : 675 - 678
  • [8] Kim J, 2016, PROC CVPR IEEE, P1637, DOI [10.1109/CVPR.2016.181, 10.1109/CVPR.2016.182]
  • [9] Gradient-based learning applied to document recognition
    Lecun, Y
    Bottou, L
    Bengio, Y
    Haffner, P
    [J]. PROCEEDINGS OF THE IEEE, 1998, 86 (11) : 2278 - 2324
  • [10] Enhanced Deep Residual Networks for Single Image Super-Resolution
    Lim, Bee
    Son, Sanghyun
    Kim, Heewon
    Nah, Seungjun
    Lee, Kyoung Mu
    [J]. 2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, : 1132 - 1140