Connected Size Ramsey Numbers for Matchings versus Cycles or Paths

被引:4
作者
Rahadjeng, Budi [1 ]
Baskoro, Edy Tri [1 ]
Assiyatun, Hilda [1 ]
机构
[1] Inst Teknol Bandung, Fac Math & Nat Sci, Combinatorial Math Res Grp, Jalan Ganesa 10, Bandung 40132, Indonesia
来源
2ND INTERNATIONAL CONFERENCE OF GRAPH THEORY AND INFORMATION SECURITY | 2015年 / 74卷
关键词
Connected size Ramsey number; matching; cycle; path; GRAPHS;
D O I
10.1016/j.procs.2015.12.071
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let F, G, and H be finite, simple and undirected graphs. The connected size Ramsey number (r) over cap (c)(G, H) of graph G and H is the least integer k such that there is a connected graph F with k edges and if the edge set of F is arbitrarily colored by red or blue, then there always exists either a red copy of G or a blue copy of H. In this paper, we determine the connected size Ramsey number (r) over cap (c)(2K(2), C-n), for n >= 4, an upper bound of (r) over cap (c)(nK(2), P-4), for n >= 2, and the exact value of (r) over cap (c)(nK(2), P-4), for 2 <= n <= 5. (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:32 / 37
页数:6
相关论文
共 7 条
[1]  
Burr S. A., 1979, ANN NY ACAD SCI, V328, P58
[2]  
Burr SA, 1978, INDAG MATH, V40, P187
[3]  
Erdos P., 1978, Periodica Mathematica Hungarica, V9, P145, DOI 10.1007/BF02018930
[4]  
Erdos P., 1981, C MATH SOC J BOLYAI, P247
[5]   SIZE RAMSEY NUMBERS FOR SMALL-ORDER GRAPHS [J].
FAUDREE, RJ ;
SHEEHAN, J .
JOURNAL OF GRAPH THEORY, 1983, 7 (01) :53-55
[6]  
FAUDREE RJ, 1983, DISCRETE MATH, V46, P151, DOI 10.1016/0012-365X(83)90248-0
[7]  
Lortz R., 1998, Aus. J. Comb., V18, P3