Stable determination of coefficients in the dynamical anisotropic Schrodinger equation from the Dirichlet-to-Neumann map

被引:18
|
作者
Bellassoued, Mourad [1 ]
Ferreira, David Dos Santos [2 ]
机构
[1] Univ 7th November, Dept Math, Fac Sci Bizerte, Carthage 7021, Jarzouna Bizert, Tunisia
[2] Univ Paris 13, CNRS, UMR LAGA 7539, F-93430 Villetaneuse, France
关键词
BOUNDARY-VALUE PROBLEM; INVERSE PROBLEM; STABILITY ESTIMATE; RECONSTRUCTION; UNIQUENESS;
D O I
10.1088/0266-5611/26/12/125010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we are interested in establishing stability estimates in the inverse problem of determining on a compact Riemannian manifold the electric potential or the conformal factor in a Schrodinger equation with Dirichlet data from measured Neumann boundary observations. This information is enclosed in the dynamical Dirichlet-to-Neumann map associated with the Schrodinger equation. We prove in dimension n >= 2 that the knowledge of the Dirichlet-to-Neumann map for the Schrodinger equation uniquely determines the electric potential and we establish Holder-type stability estimates in determining the potential. We prove similar results for the determination of a conformal factor close to 1.
引用
收藏
页数:30
相关论文
共 50 条