Arbitrary discontinuities in finite elements

被引:24
作者
Belytschko, T [1 ]
Moës, N [1 ]
Usui, S [1 ]
Parimi, C [1 ]
机构
[1] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA
关键词
finite elements; fracture; fasteners; jointed rock;
D O I
10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A technique for modelling arbitrary discontinuities in finite elements is presented. Both discontinuities in the function and its derivatives are considered. Methods for intersecting and branching discontinuities are given. In all cases, the discontinuous approximation is constructed in terms of a signed distance functions, so level sets can be used to update the position of the discontinuities. A standard displacement Galerkin method is used for developing the discrete equations. Examples of the following applications are given: crack growth, a journal bearing, a non-bonded circular inclusion and It jointed rock mass. Copyright (C) 2001 John Wiley & Sons, Ltd.
引用
收藏
页码:993 / 1013
页数:21
相关论文
共 50 条
  • [41] Theory and numerics for finite deformation fracture modelling using strong discontinuities
    Fagerstrom, Martin
    Larsson, Ragnar
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 66 (06) : 911 - 948
  • [42] Mollified finite element approximants of arbitrary order and smoothness
    Febrianto, Eky
    Ortiz, Michael
    Cirak, Fehmi
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 373 (373)
  • [43] Rayleigh wave propagation for the detection of near surface discontinuities: Finite element modeling
    Zerwer, A
    Polak, MA
    Santamarina, JC
    [J]. JOURNAL OF NONDESTRUCTIVE EVALUATION, 2003, 22 (02) : 39 - 52
  • [44] Computational modeling of strong and weak discontinuities using the extended finite element method
    Moradi, A.
    Nazari, S. Adib
    [J]. MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2016, 23 (05) : 578 - 585
  • [45] Rayleigh Wave Propagation for the Detection of Near Surface Discontinuities: Finite Element Modeling
    A. Zerwer
    M. A. Polak
    J. C. Santamarina
    [J]. Journal of Nondestructive Evaluation, 2003, 22 : 39 - 52
  • [46] Reading Whitney and finite elements with hindsight
    Kangas, Jari
    Tarhasaari, Timo
    Kettunen, Lauri
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (04) : 1157 - 1160
  • [47] LIFFE: Lithospheric flexure with finite elements
    Arnaiz-Rodriguez, Mariano S.
    Alvarez Hostos, Juan Carlos
    Audemard, Franck
    [J]. COMPUTERS & GEOSCIENCES, 2020, 140
  • [48] A nodal coupling of finite and boundary elements
    Sayas, FJ
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2003, 19 (05) : 555 - 570
  • [49] Deterioration analysis of materials and finite elements
    William, K
    Rhee, I
    [J]. ENGINEERING COMPUTATIONS, 2001, 18 (3-4) : 690 - 718
  • [50] Finite elements on dyadic grids with applications
    Cardoso, Claudio G. S.
    Cunha, Maria Cristina
    Gomide, Anamaria
    Schiozer, Denis J.
    Stolfi, Jorge
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2006, 73 (1-4) : 87 - 104