Continuous Matrix Product Ansatz for the One-Dimensional Bose Gas with Point Interaction

被引:15
|
作者
Maruyama, Isao [1 ]
Katsuray, Hosho [2 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Osaka 5608531, Japan
[2] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
关键词
algebraic Bethe ansatz; matrix product ansatz; continuous matrix product state; CORNER TRANSFER-MATRICES; TONKS-GIRARDEAU GAS; 8-VERTEX MODEL; QUANTUM-SYSTEMS; SPIN SYSTEMS; LATTICE; RENORMALIZATION; CHAIN; THERMODYNAMICS; STATE;
D O I
10.1143/JPSJ.79.073002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a matrix product representation of the Bethe ansatz state for the Lieb-Linger model describing the one-dimensional Bose gas with delta-function interaction. We first construct eigenstates of the discretized model in the form of matrix product states using the algebraic Bethe ansatz. Continuous matrix product states are then exactly obtained in the continuum limit with a finite number of particles. The factorizing F-matrices in the lattice model are indispensable for the continuous matrix product states and lead to a marked reduction from the original bosonic system with infinite degrees of freedom to the five-vertex model.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Yang-Yang thermometry and momentum distribution of a trapped one-dimensional Bose gas
    Davis, M. J.
    Blakie, P. B.
    van Amerongen, A. H.
    van Druten, N. J.
    Kheruntsyan, K. V.
    PHYSICAL REVIEW A, 2012, 85 (03):
  • [32] Thermodynamics, density profiles, and correlation functions of the inhomogeneous one-dimensional spinor Bose gas
    Patu, Ovidiu I.
    Kluemper, Andreas
    PHYSICAL REVIEW A, 2015, 92 (04):
  • [33] Dimensionally induced one-dimensional to three-dimensional phase transition of the weakly interacting ultracold Bose gas
    Irsigler, Bernhard
    Pelster, Axel
    PHYSICAL REVIEW A, 2017, 95 (04)
  • [34] Emptiness formation probability in one-dimensional Bose liquids
    Yeh, Hsiu-Chung
    Kamenev, Alex
    PHYSICAL REVIEW A, 2020, 101 (02)
  • [35] Split Fermi seas in one-dimensional Bose fluids
    Fokkema, T.
    Eliens, I. S.
    Caux, J-S
    PHYSICAL REVIEW A, 2014, 89 (03):
  • [36] Beyond-Luttinger-liquid thermodynamics of a one-dimensional Bose gas with repulsive contact interactions
    De Rosi, Giulia
    Massignan, Pietro
    Lewenstein, Maciej
    Astrakharchik, Grigori E.
    PHYSICAL REVIEW RESEARCH, 2019, 1 (03):
  • [37] Algebraic Bethe ansatz for the one-dimensional Hubbard model with chemical potential
    Guan, XW
    Yang, SD
    NUCLEAR PHYSICS B, 1998, 512 (03) : 601 - 615
  • [38] Homogeneous one-dimensional Bose-Einstein condensate in the Bogoliubov's regime
    Castellanos, Elias
    MODERN PHYSICS LETTERS B, 2016, 30 (22):
  • [39] Quantum criticality of one-dimensional multicomponent Fermi gas with strongly attractive interaction
    He, Peng
    Jiang, Yuzhu
    Guan, Xiwen
    He, Jinyu
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (01)
  • [40] Magnetic properties of commensurate Bose-Bose mixtures in one-dimensional optical lattices
    Dalmonte, M.
    Ercolessi, E.
    Mattioli, M.
    Ortolani, F.
    Vodola, D.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 217 (01) : 13 - 27