Continuous Matrix Product Ansatz for the One-Dimensional Bose Gas with Point Interaction

被引:15
|
作者
Maruyama, Isao [1 ]
Katsuray, Hosho [2 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Osaka 5608531, Japan
[2] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
关键词
algebraic Bethe ansatz; matrix product ansatz; continuous matrix product state; CORNER TRANSFER-MATRICES; TONKS-GIRARDEAU GAS; 8-VERTEX MODEL; QUANTUM-SYSTEMS; SPIN SYSTEMS; LATTICE; RENORMALIZATION; CHAIN; THERMODYNAMICS; STATE;
D O I
10.1143/JPSJ.79.073002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a matrix product representation of the Bethe ansatz state for the Lieb-Linger model describing the one-dimensional Bose gas with delta-function interaction. We first construct eigenstates of the discretized model in the form of matrix product states using the algebraic Bethe ansatz. Continuous matrix product states are then exactly obtained in the continuum limit with a finite number of particles. The factorizing F-matrices in the lattice model are indispensable for the continuous matrix product states and lead to a marked reduction from the original bosonic system with infinite degrees of freedom to the five-vertex model.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Interaction quenches in the one-dimensional Bose gas
    Kormos, Marton
    Shashi, Aditya
    Chou, Yang-Zhi
    Caux, Jean-Sebastien
    Imambekov, Adilet
    PHYSICAL REVIEW B, 2013, 88 (20):
  • [2] Quantum quench dynamics of the attractive one-dimensional Bose gas via the coordinate Bethe ansatz
    Zill, Jan C.
    Wright, Tod M.
    Kheruntsyan, Karen V.
    Gasenzer, Thomas
    Davis, Matthew J.
    SCIPOST PHYSICS, 2018, 4 (02):
  • [3] Correlation Dynamics During a Slow Interaction Quench in a One-Dimensional Bose Gas
    Bernier, Jean-Sebastien
    Citro, Roberta
    Kollath, Corinna
    Orignac, Edmond
    PHYSICAL REVIEW LETTERS, 2014, 112 (06)
  • [4] Local correlations in the attractive one-dimensional Bose gas: From Bethe ansatz to the Gross-Pitaevskii equation
    Piroli, Lorenzo
    Calabrese, Pasquale
    PHYSICAL REVIEW A, 2016, 94 (05)
  • [5] Weakly Interacting Bose Gas in the One-Dimensional Limit
    Krueger, P.
    Hofferberth, S.
    Mazets, I. E.
    Lesanovsky, I.
    Schmiedmayer, J.
    PHYSICAL REVIEW LETTERS, 2010, 105 (26)
  • [6] Quantum impurity in a one-dimensional trapped Bose gas
    Dehkharghani, A. S.
    Volosniev, A. G.
    Zinner, N. T.
    PHYSICAL REVIEW A, 2015, 92 (03):
  • [7] Generalized hydrodynamics in the one-dimensional Bose gas: theory and experiments
    Bouchoule, Isabelle
    Dubail, Jerome
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2022, 2022 (01):
  • [8] Decay of superfluid currents in the interacting one-dimensional Bose gas
    Cherny, Alexander Yu.
    Caux, Jean-Sebastien
    Brand, Joachim
    PHYSICAL REVIEW A, 2009, 80 (04):
  • [9] Impurities in a one-dimensional Bose gas: the flow equation approach
    Brauneis, Fabian
    Hammer, Hans-Werner
    Lemeshko, Mikhail
    Volosniev, Artem G.
    SCIPOST PHYSICS, 2021, 11 (01):
  • [10] Momentum-Space Correlations of a One-Dimensional Bose Gas
    Fang, Bess
    Johnson, Aisling
    Roscilde, Tommaso
    Bouchoule, Isabelle
    PHYSICAL REVIEW LETTERS, 2016, 116 (05)