The Kodaira dimension of the moduli of K3 surfaces

被引:81
作者
Gritsenko, V. A. [1 ]
Hulek, K.
Sankaran, G. K.
机构
[1] Univ Lille 1, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
[2] Leibniz Univ Hannover, Inst Algebra Geomet, D-30060 Hannover, Germany
[3] Univ Bath, Sch Math Sci, Bath BA2 7AY, Avon, England
关键词
D O I
10.1007/s00222-007-0054-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The global Torelli theorem for projective K3 surfaces was first proved by Piatetskii-Shapiro and Shafarevich 35 years ago, opening the way to treating moduli problems for K3 surfaces. The moduli space of polarised K3 surfaces of degree 2d is a quasi-projective variety of dimension 19. For general d very little has been known hitherto about the Kodaira dimension of these varieties. In this paper we present an almost complete solution to this problem. Our main result says that this moduli space is of general type for d > 61 and for d=46, 50, 54, 57, 58, 60.
引用
收藏
页码:519 / 567
页数:49
相关论文
共 40 条
[31]   INTEGRAL SYMMETRIC BILINEAR-FORMS AND SOME OF THEIR APPLICATIONS [J].
NIKULIN, VV .
MATHEMATICS OF THE USSR-IZVESTIYA, 1980, 14 (01) :103-167
[32]  
Nikulin VV., 1983, J SOVIET MATH, V22, P1401
[33]  
Oda T., 1988, ERGEBNISSE MATH IHRE, V3, P15
[34]  
Reid M., 1979, Algebraic Geometry, P273
[35]  
SCATTONE F, 1987, MEM AM MATH SOC, V70, P374
[36]   Perfect forms and the moduli space of abelian varieties [J].
Shepherd-Barron, NI .
INVENTIONES MATHEMATICAE, 2006, 163 (01) :25-45
[37]  
SNUNIKOV V, 2002, THESIS CAMBRIDGE
[38]   ON THE KODAIRA DIMENSION OF THE MODULI SPACE OF ABELIAN-VARIETIES [J].
TAI, YS .
INVENTIONES MATHEMATICAE, 1982, 68 (03) :425-439
[39]  
[No title captured]
[40]  
[No title captured]