Adaptive Variational Model for Contrast Enhancement of Low-Light Images

被引:6
|
作者
Hsieh, Po-Wen [1 ]
Shao, Pei-Chiang [2 ]
Yang, Suh-Yuh [3 ]
机构
[1] Natl Chung Hsing Univ, Dept Appl Math, Taichung 40227, Taiwan
[2] Soochow Univ, Dept Math, Taipei 11102, Taiwan
[3] Natl Cent Univ, Dept Math, Taoyuan 32001, Taiwan
关键词
contrast enhancement; image enhancement; adaptive variational model; nonuniform illumination; low-light images; HISTOGRAM EQUALIZATION; MEAN BRIGHTNESS; RETINEX; ALGORITHM; FRAMEWORK; ISSUES;
D O I
10.1137/19M1245499
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Contrast enhancement plays an important role in image/video processing and computer vision applications. Its main purpose is to adjust the image intensity to enhance the quality and features of the image. In this paper, we propose a simple and efficient adaptive variational model for contrast enhancement for partially shaded low-light images. The key idea of this adaptive approach is to employ the maximum image of the RGB color channels as a classifier to divide the image domain into the relatively bright and dim parts, and then use different fitting terms for each part such that the bright pixels are preserved as close as possible to the original ones while the dim pixels are boosted with brightness and contrast-level parameters to adjust the degree of the strength. With this adaptivity, one can find that the proposed model considerably improves upon the existing variational models in the literature. In this paper, the existence and uniqueness of the minimizer for the variational minimization problem is established. The split Bregman method is used to accomplish an efficient numerical implementation of the adaptive variational model. Moreover, a number of numerical experiments and comparisons with other popular enhancement methods are conducted to demonstrate the high performance of the newly proposed method.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [21] Low-Light Image Enhancement Using Variational Optimization-based Retinex Model
    Park, Seonhee
    Yu, Soohwan
    Moon, Byeongho
    Ko, Seungyong
    Paik, Joonki
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2017, 63 (02) : 178 - 184
  • [22] Contrast enhancement of noisy low-light images based on structure-texture-noise decomposition
    Lim, Jaemoon
    Heo, Minhyeok
    Lee, Chul
    Kim, Chang-Su
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2017, 45 : 107 - 121
  • [23] Zero-shot contrast enhancement and denoising network for low-light images
    Wu, Yahong
    Liu, Feng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (2) : 4037 - 4064
  • [24] Zero-shot contrast enhancement and denoising network for low-light images
    Yahong Wu
    Feng Liu
    Multimedia Tools and Applications, 2024, 83 : 4037 - 4064
  • [25] Low-light image enhancement via adaptive frequency decomposition network
    Liang, Xiwen
    Chen, Xiaoyan
    Ren, Keying
    Miao, Xia
    Chen, Zhihui
    Jin, Yutao
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [26] RME: a low-light image enhancement model based on reflectance map enhancing
    Fan, Zirui
    Tang, Chen
    Shen, Yuxin
    Xu, Min
    Lei, Zhenkun
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (04) : 1493 - 1502
  • [27] Low-Light Image Enhancement Using the Cell Vibration Model
    Lei, Xiaozhou
    Fei, Zixiang
    Zhou, Wenju
    Zhou, Huiyu
    Fei, Minrui
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 4439 - 4454
  • [28] Low light image enhancement with adaptive sigmoid transfer function
    Srinivas, Kankanala
    Bhandari, Ashish Kumar
    IET IMAGE PROCESSING, 2020, 14 (04) : 668 - 678
  • [29] Variational Contrast Enhancement of Gray-Scale and RGB Images
    Pierre, Fabien
    Aujol, Jean-Francois
    Bugeau, Aurelie
    Steidl, Gabriele
    Ta, Vinh-Thong
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2017, 57 (01) : 99 - 116
  • [30] Decoupled Low-Light Image Enhancement
    Hao, Shijie
    Han, Xu
    Guo, Yanrong
    Wang, Meng
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2022, 18 (04)