Adaptive Variational Model for Contrast Enhancement of Low-Light Images

被引:6
|
作者
Hsieh, Po-Wen [1 ]
Shao, Pei-Chiang [2 ]
Yang, Suh-Yuh [3 ]
机构
[1] Natl Chung Hsing Univ, Dept Appl Math, Taichung 40227, Taiwan
[2] Soochow Univ, Dept Math, Taipei 11102, Taiwan
[3] Natl Cent Univ, Dept Math, Taoyuan 32001, Taiwan
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2020年 / 13卷 / 01期
关键词
contrast enhancement; image enhancement; adaptive variational model; nonuniform illumination; low-light images; HISTOGRAM EQUALIZATION; MEAN BRIGHTNESS; RETINEX; ALGORITHM; FRAMEWORK; ISSUES;
D O I
10.1137/19M1245499
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Contrast enhancement plays an important role in image/video processing and computer vision applications. Its main purpose is to adjust the image intensity to enhance the quality and features of the image. In this paper, we propose a simple and efficient adaptive variational model for contrast enhancement for partially shaded low-light images. The key idea of this adaptive approach is to employ the maximum image of the RGB color channels as a classifier to divide the image domain into the relatively bright and dim parts, and then use different fitting terms for each part such that the bright pixels are preserved as close as possible to the original ones while the dim pixels are boosted with brightness and contrast-level parameters to adjust the degree of the strength. With this adaptivity, one can find that the proposed model considerably improves upon the existing variational models in the literature. In this paper, the existence and uniqueness of the minimizer for the variational minimization problem is established. The split Bregman method is used to accomplish an efficient numerical implementation of the adaptive variational model. Moreover, a number of numerical experiments and comparisons with other popular enhancement methods are conducted to demonstrate the high performance of the newly proposed method.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [21] Automatical Enhancement and Denoising of Extremely Low-light Images
    Song, Yuda
    Zhu, Yunfang
    Du, Xin
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 858 - 865
  • [22] Low-light Image Enhancement Using Variational Optimization-based Retinex Model
    Park, Seonhee
    Moon, Byeongho
    Ko, Seungyong
    Yu, Soohwan
    Paik, Joonki
    2017 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2017,
  • [23] Low-Light Image Enhancement Using Variational Optimization-based Retinex Model
    Park, Seonhee
    Yu, Soohwan
    Moon, Byeongho
    Ko, Seungyong
    Paik, Joonki
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2017, 63 (02) : 178 - 184
  • [24] Contrast enhancement of noisy low-light images based on structure-texture-noise decomposition
    Lim, Jaemoon
    Heo, Minhyeok
    Lee, Chul
    Kim, Chang-Su
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2017, 45 : 107 - 121
  • [25] Illumination-Adaptive Unpaired Low-Light Enhancement
    Kandula, Praveen
    Suin, Maitreya
    Rajagopalan, A. N.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (08) : 3726 - 3736
  • [26] Adaptive Low-Light Image Enhancement with Decomposition Denoising
    Gao, Yin
    Yan, Chao
    Zeng, Huixiong
    Li, Qiming
    Li, Jun
    2022 7TH INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION ENGINEERING, ICRAE, 2022, : 332 - 336
  • [27] Adaptive Illumination Estimation for Low-Light Image Enhancement
    Li, Lan
    Peng, Wen-Hao
    Duan, Zhao -Peng
    Pu, Sha-Sha
    ENGINEERING LETTERS, 2024, 32 (03) : 531 - 540
  • [28] LEFB: A new low-light image contrast enhancement algorithm
    Wang, Bin
    Zhang, Bini
    Sheng, Jinfang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2024, 35 (12):
  • [29] Low-Light Image Enhancement with Contrast Increase and Illumination Smooth
    Leng, Hongyue
    Fang, Bin
    Zhou, Mingliang
    Wu, Bin
    Mao, Qin
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (03)
  • [30] Multiscale Fusion Method for the Enhancement of Low-Light Underwater Images
    Zhou, Jingchun
    Zhang, Dehuan
    Zhang, Weishi
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020