Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters

被引:231
作者
Childress, L [1 ]
Taylor, JM
Sorensen, AS
Lukin, MD
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Harvard Smithsonian Ctr Astrophys, ITAMP, Cambridge, MA 02138 USA
[3] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark
来源
PHYSICAL REVIEW A | 2005年 / 72卷 / 05期
关键词
D O I
10.1103/PhysRevA.72.052330
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analyze a method that uses fixed, minimal physical resources to achieve generation and nested purification of quantum entanglement for quantum communication over arbitrarily long distances and discuss its implementation using realistic photon emitters and photonic channels. In this method, we use single-photon emitters with two internal degrees of freedom formed by an electron spin and a nuclear spin to build intermediate nodes in a quantum channel. State-selective fluorescence is used for probablistic entanglement generation between electron spins in adjacent nodes. We analyze in detail several approaches which are applicable to realistic, homogeneously broadened single-photon emitters. Furthermore, the coupled electron and nuclear spins can be used to efficiently implement entanglement swapping and purification. We show that these techniques can be combined to generate high-fidelity entanglement over arbitrarily long distances. We present a specific protocol that functions in polynomial time and tolerates percent-level errors in entanglement fidelity and local operations. The scheme has the lowest requirements on physical resources of any current scheme for fully fault-tolerant quantum repeaters.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Efficient high-fidelity quantum computation using matter qubits and linear optics
    Barrett, SD
    Kok, P
    [J]. PHYSICAL REVIEW A, 2005, 71 (06):
  • [2] TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS
    BENNETT, CH
    BRASSARD, G
    CREPEAU, C
    JOZSA, R
    PERES, A
    WOOTTERS, WK
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (13) : 1895 - 1899
  • [3] Purification of noisy entanglement and faithful teleportation via noisy channels
    Bennett, CH
    Brassard, G
    Popescu, S
    Schumacher, B
    Smolin, JA
    Wootters, WK
    [J]. PHYSICAL REVIEW LETTERS, 1996, 76 (05) : 722 - 725
  • [4] Single photon quantum cryptography
    Beveratos, A
    Brouri, R
    Gacoin, T
    Villing, A
    Poizat, JP
    Grangier, P
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (18) : 1 - 187901
  • [5] Observation of entanglement between a single trapped atom and a single photon
    Blinov, BB
    Moehring, DL
    Duan, LM
    Monroe, C
    [J]. NATURE, 2004, 428 (6979) : 153 - 157
  • [6] Proposal for teleportation of an atomic state via cavity decay
    Bose, S
    Knight, PL
    Plenio, MB
    Vedral, V
    [J]. PHYSICAL REVIEW LETTERS, 1999, 83 (24) : 5158 - 5161
  • [7] Experimental quantum teleportation
    Bouwmeester, D
    Pan, JW
    Mattle, K
    Eibl, M
    Weinfurter, H
    Zeilinger, A
    [J]. NATURE, 1997, 390 (6660) : 575 - 579
  • [8] BRACKER AS, CONDMAT0408466
  • [9] Limitations on practical quantum cryptography
    Brassard, G
    Lütkenhaus, N
    Mor, T
    Sanders, BC
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (06) : 1330 - 1333
  • [10] Quantum repeaters:: The role of imperfect local operations in quantum communication
    Briegel, HJ
    Dür, W
    Cirac, JI
    Zoller, P
    [J]. PHYSICAL REVIEW LETTERS, 1998, 81 (26) : 5932 - 5935