Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponents

被引:45
作者
Mizuta, Yoshihiro [2 ]
Nakai, Eiichi [3 ]
Ohno, Takao [1 ]
Shimomura, Tetsu [4 ]
机构
[1] Hiroshima Natl Coll Maritime Technol, Higashino Oosakikamijima 7250231, Japan
[2] Hiroshima Univ, Fac Integrated Arts & Sci, Div Math & Informat Sci, Higashihiroshima 7398521, Japan
[3] Osaka Kyoiku Univ, Dept Math, Osaka 5828582, Japan
[4] Hiroshima Univ, Grad Sch Educ, Dept Math, Higashihiroshima 7398524, Japan
关键词
Morrey spaces of variable exponent; Riesz potentials; Sobolev embeddings; Sobolev's inequality; Trudinger's exponential inequality; Lipschitz spaces of variable exponent; CONTINUITY PROPERTIES; INTEGRAL-OPERATORS; MAXIMAL OPERATOR;
D O I
10.1080/17476933.2010.504837
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let alpha, nu, beta, p and q be variable exponents. Our aim in this article is to deal with Sobolev embeddings for Riesz potentials of order alpha with functions f in Morrey spaces L-Phi,L-nu,L-beta(G) with Phi(t) = t(p)(log(e + t))(q) over a bounded open set G subset of R-n. Here p and q satisfy the log-Holder and the loglog-Holder conditions, respectively. Also the case when p attains the value 1 in some parts of the domain is included in our results.
引用
收藏
页码:671 / 695
页数:25
相关论文
共 29 条
[1]  
Adams D. R., 1996, Function Spaces and Potential Theory
[2]  
ADAMS DR, 1975, DUKE MATH J, V42, P765, DOI 10.1215/S0012-7094-75-04265-9
[3]  
Almeida A, 2008, GEORGIAN MATH J, V15, P195
[4]  
[Anonymous], 2008, Banach and Function Spaces II
[5]  
[Anonymous], 2004, BANACH FUNCTION SPAC
[6]  
[Anonymous], 1965, Ann. Scuola Norm. Sup. Pisa
[7]  
[Anonymous], 1989, GRADUATE TEXTS MATH
[8]  
Chiarenza F., 1987, Rend. Mat., V7, P273
[9]  
Cruz-Uribe D, 2009, T AM MATH SOC, V361, P2631
[10]   Some properties of fractional integrals I [J].
Hardy, GH ;
Littlewood, JE .
MATHEMATISCHE ZEITSCHRIFT, 1928, 27 :565-606