An insight into cathode options for microbial fuel cells

被引:38
作者
Lefebvre, O. [1 ]
Al-Mamun, A. [1 ]
Ooi, W. K. [1 ]
Tang, Z. [2 ]
Chua, D. H. C.
Ng, H. Y. [1 ,2 ]
机构
[1] Natl Univ Singapore, Div Environm Sci & Engn, Singapore 117576, Singapore
[2] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117576, Singapore
关键词
anaerobic digestion; biocathode; denitrification; domestic wastewater; microbial fuel cell; wastewater treatment;
D O I
10.2166/wst.2008.611
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microbial fuel cell (MFC) is an emerging and promising technology, particularly in the field of wastewater treatment. The MFC capability of achieving organic removal and generating in situ electricity could make it an attractive alternative wastewater treatment technology over conventional treatment technologies. However, MFC is still far from being economically viable, especially because of the cost of the platinum (Pt) catalyst that makes possible the reaction at the cathode. In this study, we tested alternative cathode catalysts, namely sputter-deposited Cobalt (Co) and denitrifying bacteria ( biocathode). The performance of these innovative cathodes was compared with that of classic Pt-cathodes. Co competed well with Pt, but further research is still required for biocathodes. However, biocathodes MFC have showed promise.
引用
收藏
页码:2031 / 2037
页数:7
相关论文
共 19 条
[1]   Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells [J].
Cheng, S ;
Liu, H ;
Logan, BE .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (01) :364-369
[2]   Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing [J].
Cheng, S ;
Liu, H ;
Logan, BE .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (07) :2426-2432
[3]   Increased performance of single-chamber microbial fuel cells using an improved cathode structure [J].
Cheng, S ;
Liu, H ;
Logan, BE .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (03) :489-494
[4]   Biological denitrification in microbial fuel cells [J].
Clauwaert, Peter ;
Rabaey, Korneel ;
Aelterman, Peter ;
De Schamphelaire, Liesje ;
Ham, The Haip ;
Boeckx, Pascal ;
Boon, Nico ;
Verstraete, Willy .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (09) :3354-3360
[5]   Electricity generation from artificial wastewater using an upflow microbial fuel cell [J].
He, Z ;
Minteer, SD ;
Angenent, LT .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (14) :5262-5267
[6]   Application of bacterial biocathodes in microbial fuel cells [J].
He, Zhen ;
Angenent, Largus T. .
ELECTROANALYSIS, 2006, 18 (19-20) :2009-2015
[7]   Production of electricity during wastewater treatment using a single chamber microbial fuel cell [J].
Liu, H ;
Ramnarayanan, R ;
Logan, BE .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2004, 38 (07) :2281-2285
[8]   Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane [J].
Liu, H ;
Logan, BE .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2004, 38 (14) :4040-4046
[9]   Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells [J].
Logan, Bruce ;
Cheng, Shaoan ;
Watson, Valerie ;
Estadt, Garett .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (09) :3341-3346
[10]   Microbial fuel cells: Methodology and technology [J].
Logan, Bruce E. ;
Hamelers, Bert ;
Rozendal, Rene A. ;
Schrorder, Uwe ;
Keller, Jurg ;
Freguia, Stefano ;
Aelterman, Peter ;
Verstraete, Willy ;
Rabaey, Korneel .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (17) :5181-5192