Successive approximations of infinite dimensional SDEs with jump

被引:28
作者
Cao, GL [1 ]
He, K
Zhang, XC
机构
[1] Huazhong Univ Sci & Technol, Dept Math, Wuhan 430074, Peoples R China
[2] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100080, Peoples R China
基金
美国国家科学基金会;
关键词
successive approximations; non-Markovian; Poisson point process;
D O I
10.1142/S0219493705001584
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the existence and uniqueness of solutions to non-Markovian stochastic differential equations with jump and non-Lipschitz coefficients in infinite dimensional spaces by successive approximation.
引用
收藏
页码:609 / 619
页数:11
相关论文
共 8 条
[1]   Modulus of continuity of the canonic Brownian motion "on the group of diffeomorphisms of the circle" [J].
Airault, H ;
Ren, JG .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 196 (02) :395-426
[2]   On a type of stochastic differential equations driven by countably many Brownian motions [J].
Cao, GL ;
He, K .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 203 (01) :262-285
[3]  
DaPrato G., 2014, Stochastic Equations in Infinite Dimensions, V152, P493, DOI [10.1017/CBO9781107295513, 10.1017/CBO9780511666223]
[4]  
Ikeda N., 1989, STOCHASTIC DIFFERENT, DOI DOI 10.1002/BIMJ.4710320720
[5]   The canonic diffusion above the diffeomorphism group of the circle [J].
Malliavin, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (04) :325-329
[6]   SUCCESSIVE-APPROXIMATIONS TO SOLUTIONS OF STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
TANIGUCHI, T .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 96 (01) :152-169
[7]   ON THE SUCCESSIVE APPROXIMATION OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
YAMADA, T .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1981, 21 (03) :501-515
[8]  
Yamada Toshio., 1971, Journal of Mathematics of Kyoto University, V11, P155, DOI [10.1215/kjm/1250523691, DOI 10.1215/KJM/1250523691]