Topological G2 and Spin(7) strings at 1-loop from double complexes

被引:4
作者
Ashmore, Anthony [1 ,2 ,3 ]
Coimbra, Andre [4 ]
Strickland-Constable, Charles [5 ]
Svanes, Eirik Eik [6 ]
Tennyson, David [7 ]
机构
[1] Univ Chicago, Enrico Fermi Inst, 933 E 56th St, Chicago, IL 60637 USA
[2] Univ Chicago, Kadanoff Ctr Theoret Phys, 933 E 56th St, Chicago, IL 60637 USA
[3] Sorbonne Univ, Lab Phys Theor & Hautes Energies, 4 Pl Jussieu, F-75005 Paris, France
[4] Max Planck Inst Gravitat Phys, Albert Einstein Inst, Muhlenberg 1, D-14476 Potsdam, Germany
[5] Univ Hertfordshire, Dept Phys Astron & Math, Coll Lane, Hatfield AL10 9AB, Herts, England
[6] Univ Stavanger, Dept Math & Phys, Kristine Bonnevies Vei 22, N-4021 Stavanger, Norway
[7] Imperial Coll London, Dept Phys, Prince Consort Rd, London SW7 2AZ, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
Differential and Algebraic Geometry; Flux Compactifications; Topological Strings; Superstring Vacua; ANALYTIC TORSION; MANIFOLDS; GEOMETRY; MODEL;
D O I
10.1007/JHEP02(2022)089
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the topological G(2) and Spin(7) strings at 1-loop. We define new double complexes for supersymmetric NSNS backgrounds of string theory using generalised geometry. The 1-loop partition function then has a target-space interpretation as a particular alternating product of determinants of Laplacians, which we have dubbed the analytic torsion. In the case without flux where these backgrounds have special holonomy, we reproduce the worldsheet calculation of the G(2) string and give a new prediction for the Spin(7) string. We also comment on connections with topological strings on Calabi-Yau and K-3 backgrounds.
引用
收藏
页数:77
相关论文
共 105 条
[1]   Counting associatives in compact G2 orbifolds [J].
Acharya, Bobby Samir ;
Braun, Andreas P. ;
Svanes, Eirik Eik ;
Valandro, Roberto .
JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (03)
[2]   On mirror symmetry for manifolds of exceptional holonomy [J].
Acharya, BS .
NUCLEAR PHYSICS B, 1998, 524 (1-2) :269-282
[3]   Dirichlet Joyce manifolds, discrete torsion and duality [J].
Acharya, BS .
NUCLEAR PHYSICS B, 1997, 492 (03) :591-606
[4]   The topological vertex [J].
Aganagic, M ;
Klemm, A ;
Mariño, M ;
Vafa, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 254 (02) :425-478
[5]  
Anguelova L, 2005, J HIGH ENERGY PHYS
[6]  
[Anonymous], 1998, Spin geometry
[7]   Generalising G2 geometry: involutivity, moment maps and moduli [J].
Ashmore, Anthony ;
Strickland-Constable, Charles ;
Tennyson, David ;
Waldram, Daniel .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (01)
[8]   Heterotic backgrounds via generalised geometry: moment maps and moduli [J].
Ashmore, Anthony ;
Strickland-Constable, Charles ;
Tennyson, David ;
Waldram, Daniel .
JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (11)
[9]   Finite deformations from a heterotic superpotential: holomorphic Chern-Simons and an L algebra [J].
Ashmore, Anthony ;
de la Ossa, Xenia ;
Minasian, Ruben ;
Strickland-Constable, Charles ;
Svanes, Eirik Eik .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (10)
[10]   Exceptional Calabi-Yau spaces: the geometry of N=2 backgrounds with flux [J].
Ashmore, Anthony ;
Waldram, Daniel .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2017, 65 (01)