An improved bound for the dimension of (α, 2α)-Furstenberg sets

被引:9
作者
Hera, Kornelia [1 ]
Shmerkin, Pablo [2 ,3 ,4 ]
Yavicoli, Alexia [4 ,5 ]
机构
[1] Univ Chicago, Dept Math, 5734 S Univ Ave, Chicago, IL 60637 USA
[2] Torcuato Tella Univ, Dept Math & Stat, Buenos Aires, DF, Argentina
[3] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
[4] Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
[5] Univ St Andrews, Sch Math & Stat, St Andrews, Fife, Scotland
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
Hausdorff dimension; Furstenberg sets; discretized sets; HAUSDORFF DIMENSION; PROJECTIONS; FAMILIES; UNIONS;
D O I
10.4171/RMI/1281
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that given alpha is an element of (0, 1) there is a constant c = c (alpha) > 0 such that any planar (alpha, 2 alpha)-Furstenberg set has Hausdorff dimension at least 2 alpha + c. This improves several previous bounds, in particular extending a result of Katz-Tao and Bourgain. We follow the Katz-Tao approach with suitable changes, along the way clarifying, simplifying and/or quantifying many of the steps.
引用
收藏
页码:295 / 322
页数:28
相关论文
共 18 条
  • [1] On the Erdos-Volkmann and Katz-Tao ring conjectures
    Bourgain, J
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2003, 13 (02) : 334 - 365
  • [2] The discretized sum-product and projection theorems
    Bourgain, Jean
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2010, 112 : 193 - 236
  • [3] Falconer K., 2014, FRACTAL GEOMETRY MAT
  • [4] On restricted families of projections in R3
    Fassler, Katrin
    Orponen, Tuomas
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 109 : 353 - 381
  • [5] Guth L., INT MATH RES NOT IMR, P9769
  • [6] Orthogonal projections of discretized sets
    He, Weikun
    [J]. JOURNAL OF FRACTAL GEOMETRY, 2020, 7 (03) : 271 - 317
  • [7] Hausdorff dimension of unions of affine subspaces and of Furstenberg-type sets
    Hera, Kornelia
    Keleti, Tunas
    Mathe, Andras
    [J]. JOURNAL OF FRACTAL GEOMETRY, 2019, 6 (03) : 263 - 284
  • [8] HAUSDORFF DIMENSION OF FURSTENBERG-TYPE SETS ASSOCIATED TO FAMILIES OF AFFINE SUBSPACES
    Hera, Kornelia
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2019, 44 : 903 - 923
  • [9] Katz N., 2001, NEW YORK J MATH, V7, P149
  • [10] Bounding the Dimension of Points on a Line
    Lutz, Neil
    Stull, D. M.
    [J]. THEORY AND APPLICATIONS OF MODELS OF COMPUTATION (TAMC 2017), 2017, 10185 : 424 - 438