Guanidinium-Assisted Surface Matrix Engineering for Highly Efficient Perovskite Quantum Dot Photovoltaics

被引:162
作者
Ling, Xufeng [1 ]
Yuan, Jianyu [1 ]
Zhang, Xuliang [1 ]
Qian, Yuli [1 ]
Zakeeruddin, Shaik M. [2 ]
Larson, Bryon W. [3 ]
Zhao, Qian [3 ]
Shi, Junwei [1 ]
Yang, Jiacheng [1 ]
Ji, Kang [1 ]
Zhang, Yannan [1 ]
Wang, Yongjie [1 ]
Zhang, Chunyang [2 ]
Duhm, Steffen [1 ]
Luther, Joseph M. [3 ]
Gratzel, Michael [2 ]
Ma, Wanli [1 ]
机构
[1] Soochow Univ, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Joint Int Res Lab Carbon Based Funct Mat & Device, Inst Funct Nano & Soft Mat FUNSOM, 199 Ren Ai Rd,Suzhou Ind Pk, Suzhou 215123, Jiangsu, Peoples R China
[2] Ecole Polytech Fed Lausanne EPFL, Lab Photon & Interfaces LPI, Inst Chem Sci & Engn, Stn 6, CH-1015 Lausanne, Switzerland
[3] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA
基金
中国国家自然科学基金;
关键词
CsPbI3; guanidinium thiocyanate; ligand exchange; perovskite quantum dots; solar cells; SOLAR-CELLS; ALPHA-CSPBI3; PEROVSKITE; FORMAMIDINIUM; NANOCRYSTALS;
D O I
10.1002/adma.202001906
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal halide perovskite quantum dots (Pe-QDs) are of great interest in new-generation photovoltaics (PVs). However, it remains challenging in the construction of conductive and intact Pe-QD films to maximize their functionality. Herein, a ligand-assisted surface matrix strategy to engineer the surface and packing states of Pe-QD solids is demonstrated by a mild thermal annealing treatment after ligand exchange processing (referred to as "LE-TA") triggered by guanidinium thiocyanate. The "LE-TA" method induces the formation of surface matrix on CsPbI3 QDs, which is dominated by the cationic guanidinium (GA(+)) rather than the SCN-, maintaining the intact cubic structure and facilitating interparticle electrical interaction of QD solids. Consequently, the GA-matrix-confined CsPbI3 QDs exhibit remarkably enhanced charge mobility and carrier diffusion length compared to control ones, leading to a champion power conversion efficiency of 15.21% when assembled in PVs, which is one of the highest among all Pe-QD solar cells. Additionally, the "LE-TA" method shows similar effects when applied to other Pe-QD PV systems like CsPbBr3 and FAPbI(3) (FA = formamidinium), indicating its versatility in regulating the surfaces of various Pe-QDs. This work may afford new guidelines to construct electrically conductive and structurally intact Pe-QD solids for efficient optoelectronic devices.
引用
收藏
页数:9
相关论文
共 36 条
[1]   Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals [J].
Akkerman, Quinten A. ;
Raino, Gabriele ;
Kovalenko, Maksym V. ;
Manna, Liberato .
NATURE MATERIALS, 2018, 17 (05) :394-405
[2]   Low-Temperature Annealing for Highly Conductive Lead Chalcogenide Quantum Dot Solids [J].
Baik, Seung Jae ;
Kim, Kyungnam ;
Lim, Koeng Su ;
Jung, SoMyung ;
Park, Yun-Chang ;
Han, Dong Geon ;
Lim, Sooyeon ;
Yoo, Seunghyup ;
Jeong, Sohee .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (03) :607-612
[3]   High Efficiency Mesoscopic Solar Cells Using CsPbI3 Perovskite Quantum Dots Enabled by Chemical Interface Engineering [J].
Chen, Keqiang ;
Jin, Wei ;
Zhang, Yupeng ;
Yang, Tingqiang ;
Reiss, Peter ;
Zhong, Qiaohui ;
Bach, Udo ;
Li, Qitao ;
Wang, Yingwei ;
Zhang, Han ;
Bao, Qiaoliang ;
Liu, Yueli .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (08) :3775-3783
[4]   Guanidinium: A Route to Enhanced Carrier Lifetime and Open-Circuit Voltage in Hybrid Perovskite Solar Cells [J].
De Marco, Nicholas ;
Zhou, Huanping ;
Chen, Qi ;
Sun, Pengyu ;
Liu, Zonghao ;
Meng, Lei ;
Yao, En-Ping ;
Liu, Yongsheng ;
Schiffer, Andy ;
Yang, Yang .
NANO LETTERS, 2016, 16 (02) :1009-1016
[5]   Investigation of formamidinium and guanidinium lead tri-iodide powders as precursors for solar cells [J].
Dimesso, L. ;
Quintilla, A. ;
Kim, Y. -M. ;
Lemmer, U. ;
Jaegermann, W. .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2016, 204 :27-33
[6]   Inorganic caesium lead iodide perovskite solar cells [J].
Eperon, Giles E. ;
Paterno, Giuseppe M. ;
Sutton, Rebecca J. ;
Zampetti, Andrea ;
Haghighirad, Amir Abbas ;
Cacialli, Franco ;
Snaith, Henry J. .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (39) :19688-19695
[7]   Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1-xFAxPbI3 quantum dot solar cells with reduced phase segregation [J].
Hao, Mengmeng ;
Bai, Yang ;
Zeiske, Stefan ;
Ren, Long ;
Liu, Junxian ;
Yuan, Yongbo ;
Zarrabi, Nasim ;
Cheng, Ningyan ;
Ghasemi, Mehri ;
Chen, Peng ;
Lyu, Miaoqiang ;
He, Dongxu ;
Yun, Jung-Ho ;
Du, Yi ;
Wang, Yun ;
Ding, Shanshan ;
Armin, Ardalan ;
Meredith, Paul ;
Liu, Gang ;
Cheng, Hui-Ming ;
Wang, Lianzhou .
NATURE ENERGY, 2020, 5 (01) :79-88
[8]   Perovskite Quantum Dot Photovoltaic Materials beyond the Reach of Thin Films: Full-Range Tuning of A-Site Cation Composition [J].
Hazarika, Abhijit ;
Zhao, Qian ;
Gaulding, E. Ashley ;
Christians, Jeffrey A. ;
Dou, Benjia ;
Marshall, Ashley R. ;
Moot, Taylor ;
Berry, Joseph J. ;
Johnson, Justin C. ;
Luther, Joseph M. .
ACS NANO, 2018, 12 (10) :10327-10337
[9]   Halide Perovskite Photovoltaics: Background, Status, and Future Prospects [J].
Jena, Ajay Kumar ;
Kulkarni, Ashish ;
Miyasaka, Tsutomu .
CHEMICAL REVIEWS, 2019, 119 (05) :3036-3103
[10]   Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells [J].
Jodlowski, Alexander D. ;
Roldan-Carmona, Cristina ;
Grancini, Giulia ;
Salado, Manuel ;
Ralaiarisoa, Maryline ;
Ahmad, Shahzada ;
Koch, Norbert ;
Camacho, Luis ;
de Miguel, Gustavo ;
Nazeeruddin, Mohammad Khaja .
NATURE ENERGY, 2017, 2 (12) :972-979