A Convolution-Based Shearlet Transform in Free Metaplectic Domains

被引:8
|
作者
Garg, Tarun K. [1 ]
Lone, Waseem Z. [2 ]
Shah, Firdous A. [2 ]
Mejjaoli, Hatem [3 ]
机构
[1] Univ Delhi, Satyawati Coll, Dept Math, Delhi 110052, India
[2] Univ Kashmir, Dept Math, South Campus, Anantnag 192101, Jammu & Kashmir, India
[3] Taibah Univ, Coll Sci, Dept Math, POB 30002, Al Madinah 30002, Al Munawarah, Saudi Arabia
关键词
UNCERTAINTY PRINCIPLE;
D O I
10.1155/2021/2140189
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The free metaplectic transformation (FMT) is a multidimensional integral transform that encompasses a broader range of integral transforms, from the classical Fourier to the more recent linear canonical transforms. The aim of this study is to introduce a novel shearlet transform by employing the free metaplectic convolution structures. Besides obtaining the orthogonality relation, inversion formula, and range theorem, we also study the homogeneous approximation property for the proposed transform. Towards the culmination, we formulate the Heisenberg and logarithmic-type uncertainty principles associated with the free metaplectic shearlet transform.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Generalized convolution and product theorems associated with the free metaplectic transformation and their applications
    Cui, Manjun
    Zhang, Zhichao
    DIGITAL SIGNAL PROCESSING, 2024, 145
  • [32] Uncertainty Principle for Real Functions in Free Metaplectic Transformation Domains
    Zhichao Zhang
    Journal of Fourier Analysis and Applications, 2019, 25 : 2899 - 2922
  • [33] Uncertainty Principle for Real Functions in Free Metaplectic Transformation Domains
    Zhang, Zhichao
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (06) : 2899 - 2922
  • [34] Free metaplectic wavelet transform in L2(Rn)
    Shah, Firdous A.
    Qadri, Huzaifa L.
    Lone, Waseem Z.
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2022, 20 (04)
  • [35] Free convolution operators and free Hall transform
    Cebron, Guillaume
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (11) : 2645 - 2708
  • [36] Convolution-based particle tracking method for transient flow
    Srinivasan, Gowri
    Keating, Elizabeth
    Moulton, John David
    Dash, Zora V.
    Robinson, Bruce A.
    COMPUTATIONAL GEOSCIENCES, 2012, 16 (03) : 551 - 563
  • [37] Monte Carlo validation of convolution-based voxelwise dosimetry
    Graves, Stephen
    Tiwari, Ashok
    Kruzer, Alexandria
    Nelson, Aaron
    Mirando, David
    Dewaraja, Yuni
    Sunderland, John
    JOURNAL OF NUCLEAR MEDICINE, 2020, 61
  • [38] Convolution-based multi-scale envelope inversion
    Liu, Ding-Jin
    Huang, Jian-Ping
    Wang, Zi-Ying
    PETROLEUM SCIENCE, 2020, 17 (02) : 352 - 362
  • [39] A unified framework for convolution-based graph neural networks
    Pan, Xuran
    Han, Xiaoyan
    Wang, Chaofei
    Li, Zhuo
    Song, Shiji
    Huang, Gao
    Wu, Cheng
    PATTERN RECOGNITION, 2024, 155
  • [40] ResConvE: Deeper Convolution-Based Knowledge Graph Embeddings
    Long, Yongxu
    Qiu, Zihan
    Zheng, Dongyang
    Wu, Zhengyang
    Li, Jianguo
    Tang, Yong
    COMPUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING, CHINESECSCW 2021, PT II, 2022, 1492 : 162 - 172