Singular Gauduchon metrics

被引:2
作者
Pan, Chung-Ming [1 ]
机构
[1] Univ Toulouse, CNRS, UPS, Inst Math Toulouse,UMR 5219, 118 Route Narbonne, F-31062 Toulouse 9, France
关键词
Gauduchon metrics; complex spaces; smoothable singularities; EXTENSION; MANIFOLDS; EXISTENCE; CURRENTS;
D O I
10.1112/S0010437X22007618
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1977, Gauduchon proved that on every compact hermitian manifold (X, omega) there exists a conformally equivalent hermitian metric omega(G) which satisfies dd(c)omega(n-1)(G) = 0. In this note, we extend this result to irreducible compact singular hermitian varieties which admit a smoothing.
引用
收藏
页码:1314 / 1328
页数:16
相关论文
共 50 条
  • [1] ON GENERALIZED GAUDUCHON METRICS
    Fino, Anna
    Ugarte, Luis
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2013, 56 (03) : 733 - 753
  • [2] Gauduchon metrics with prescribed volume form
    Szekelyhidi, Gabor
    Tosatti, Valentino
    Weinkove, Ben
    ACTA MATHEMATICA, 2017, 219 (01) : 181 - 211
  • [3] Semilinear equations, the γk function, and generalized Gauduchon metrics
    Fu, Jixiang
    Wang, Zhizhang
    Wu, Damin
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (02) : 659 - 680
  • [4] A Parabolic Monge-Ampere Type Equation of Gauduchon Metrics
    Zheng, Tao
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (17) : 5497 - 5538
  • [5] SCALAR CURVATURE AND SINGULAR METRICS
    Shi, Yuguang
    Tam, Luen-Fai
    PACIFIC JOURNAL OF MATHEMATICS, 2018, 293 (02) : 427 - 470
  • [6] Deformation limits of projective manifolds: Hodge numbers and strongly Gauduchon metrics
    Popovici, Dan
    INVENTIONES MATHEMATICAE, 2013, 194 (03) : 515 - 534
  • [7] Balanced Metrics and Gauduchon Cone of Locally Conformally Kähler Manifolds
    Ornea, Liviu
    Verbitsky, Misha
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2025, 2025 (03)
  • [8] On blow-ups and resolutions of Hermitian-symplectic and strongly Gauduchon metrics
    Yang, Song
    ARCHIV DER MATHEMATIK, 2015, 104 (05) : 441 - 450
  • [9] On generalized Gauduchon nilmanifolds
    Latorre, A.
    Ugarte, L.
    Villacampa, R.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2017, 54 : 150 - 164
  • [10] Singular Yamabe Metrics by Equivariant Reduction
    Hyder, Ali
    Pistoia, Angela
    Sire, Yannick
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (12) : 12525 - 12547