The water trimer reaction OH + (H2O)3 → (H2O)2OH + H2O

被引:1
作者
Gao, Aifang [1 ,2 ,3 ]
Li, Guoliang [3 ,4 ]
Peng, Bin [3 ,4 ]
Weidman, Jared D. [3 ]
Xie, Yaoming [3 ]
Schaefer, Henry F. [3 ]
机构
[1] Hebei GEO Univ, Sch Water Resources & Environm, Shijiazhuang 050031, Hebei, Peoples R China
[2] Hebei Prov Collaborat Innovat Ctr Sustainable Uti, Shijiazhuang 050031, Hebei, Peoples R China
[3] Univ Georgia, Ctr Computat Quantum Chem, Athens, GA 30602 USA
[4] South China Normal Univ, Ctr Computat Quantum Chem, MOE Key Lab Theoret Chem Environm, Guangzhou 510006, Peoples R China
关键词
POTENTIAL-ENERGY SURFACE; VIBRATIONS; HYDRATION; CLUSTERS;
D O I
10.1039/d0cp01418d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
All important stationary points on the potential energy surface (PES) for the reaction OH + (H2O)(3) -> (H2O)(2)OH + H2O have been fully optimized using the "gold standard" CCSD(T) method with the large Dunning correlation-consistent cc-pVQZ basis sets. Three types of pathways were found. For the pathway without hydrogen abstraction, the barrier height of the transition state (TS1) is predicted to lie 5.9 kcal mol(-1) below the reactants. The two major complexes (H2O)(3)MIDLINE HORIZONTAL ELLIPSISOH (CP1 and CP2a) are found to lie 6.3 and 11.0 kcal mol(-1), respectively, below the reactants [OH + (H2O)(3)]. For one of the H-abstraction pathways the lowest classical barrier height is predicted to be much higher, 6.1 kcal mol(-1) (TS2a) above the reactants. For the other H-abstraction pathway the barrier height is even higher, 15.0 (TS3) kcal mol(-1). Vibrational frequencies and the zero-point vibrational energies connected to the PES are also reported. The energy barriers for the H-abstraction pathways are compared with those for the OH + (H2O)(2) and OH + H2O reactions, and the effects of the third water on the energetics are usually minor (0.2 kcal mol(-1)).
引用
收藏
页码:9767 / 9774
页数:8
相关论文
共 45 条
[1]   Do hydroxyl radical-water clusters, OH(H2O)n, n=1-5, exist in the atmosphere? [J].
Allodi, Marco A. ;
Dunn, Meghan E. ;
Livada, Jovan ;
Kirschner, Karl N. ;
Shields, George C. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (49) :13283-13289
[2]   Anchoring the potential energy surface of the cyclic water trimer [J].
Anderson, JA ;
Crager, K ;
Fedoroff, L ;
Tschumper, GS .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (22) :11023-11029
[3]   Intermolecular vibrations of the water trimer, a matrix isolation study [J].
Ceponkus, J ;
Karlström, G ;
Nelander, B .
JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (35) :7859-7864
[4]   Structure and dynamics of small water clusters, trapped in inert matrices [J].
Ceponkus, J. ;
Engdahl, A. ;
Uvdal, P. ;
Nelander, B. .
CHEMICAL PHYSICS LETTERS, 2013, 581 :1-9
[5]   Experimental and Theoretical Investigations of the Dissociation Energy (D0) and Dynamics of the Water Trimer, (H2O)3 [J].
Ch'ng, Lee C. ;
Samanta, Amit K. ;
Wang, Yimin ;
Bowman, Joel M. ;
Reisler, Hanna .
JOURNAL OF PHYSICAL CHEMISTRY A, 2013, 117 (32) :7207-7216
[6]   THE FREE-RADICAL CHEMISTRY OF CLOUD DROPLETS AND ITS IMPACT UPON THE COMPOSITION OF RAIN [J].
CHAMEIDES, WL ;
DAVIS, DD .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1982, 87 (NC7) :4863-4877
[7]   THEORY OF MOLECULAR-INTERACTIONS .3. COMPARISON OF STUDIES OF H2O POLYMERS USING DIFFERENT MOLECULAR-ORBITAL BASIS SETS [J].
DELBENE, JE ;
POPLE, JA .
JOURNAL OF CHEMICAL PHYSICS, 1973, 58 (09) :3605-3608
[8]   The hydration of the OH radical: Microsolvation modeling and statistical mechanics simulation [J].
do Couto, PC ;
Guedes, RC ;
Cabral, BJC ;
Simoes, JAM .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (14) :7344-7355
[9]   Density functional study of HO(H2O)n (n=1-3) clusters [J].
Dong, XL ;
Zhou, ZY ;
Tian, LJ ;
Zhao, G .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2005, 102 (04) :461-469
[10]   The OH radical-H2O molecular interaction potential [J].
Du, Shiyu ;
Francisco, Joseph S. ;
Schenter, Gregory K. ;
Iordanov, Tzvetelin D. ;
Garrett, Bruce C. ;
Dupuis, Michel ;
Li, Jun .
JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (22)