Artificial Intelligence-Based Approaches to Reflectance Confocal Microscopy Image Analysis in Dermatology

被引:23
作者
Malciu, Ana Maria [1 ]
Lupu, Mihai [2 ]
Voiculescu, Vlad Mihai [1 ,2 ]
机构
[1] Elias Univ, Dept Dermatol, Emergency Hosp, Bucharest 011461, Romania
[2] Carol Davila Univ Med & Pharm, Dept Dermatol, Bucharest 050474, Romania
关键词
dermatology; dermoscopy; in vivo; confocal microscopy; deep learning; artificial intelligence; skin cancer; artifact; LASER-SCANNING MICROSCOPY; BASAL-CELL CARCINOMA; IN-VIVO DIAGNOSIS; MULTIPHOTON MICROSCOPY; MELANOMA; CLASSIFICATION; SPECIFICITY; SENSITIVITY; ACCURACY;
D O I
10.3390/jcm11020429
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Reflectance confocal microscopy (RCM) is a non-invasive imaging method designed to identify various skin diseases. Confocal based diagnosis may be subjective due to the learning curve of the method, the scarcity of training programs available for RCM, and the lack of clearly defined diagnostic criteria for all skin conditions. Given that in vivo RCM is becoming more widely used in dermatology, numerous deep learning technologies have been developed in recent years to provide a more objective approach to RCM image analysis. Machine learning-based algorithms are used in RCM image quality assessment to reduce the number of artifacts the operator has to view, shorten evaluation times, and decrease the number of patient visits to the clinic. However, the current visual method for identifying the dermal-epidermal junction (DEJ) in RCM images is subjective, and there is a lot of variation. The delineation of DEJ on RCM images could be automated through artificial intelligence, saving time and assisting novice RCM users in studying the key DEJ morphological structure. The purpose of this paper is to supply a current summary of machine learning and artificial intelligence's impact on the quality control of RCM images, key morphological structures identification, and detection of different skin lesion types on static RCM images.
引用
收藏
页数:13
相关论文
共 66 条
[1]   In Vivo Multiphoton Microscopy of Basal Cell Carcinoma [J].
Balu, Mihaela ;
Zachary, Christopher B. ;
Harris, Ronald M. ;
Krasieva, Tatiana B. ;
Konig, Karsten ;
Tromberg, Bruce J. ;
Kelly, Kristen M. .
JAMA DERMATOLOGY, 2015, 151 (10) :1068-1074
[2]   High-definition optical coherence tomography enables visualization of individual cells in healthy skin: comparison to reflectance confocal microscopy [J].
Boone, Marc ;
Jemec, Gregor B. E. ;
Del Marmol, Veronique .
EXPERIMENTAL DERMATOLOGY, 2012, 21 (10) :740-744
[3]   A Multiresolution Convolutional Neural Network with Partial Label Training for Annotating Reflectance Confocal Microscopy Images of Skin [J].
Bozkurt, Alican ;
Kose, Kivanc ;
Alessi-Fox, Christi ;
Gill, Melissa ;
Dy, Jennifer ;
Brooks, Dana ;
Rajadhyaksha, Milind .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT II, 2018, 11071 :292-299
[4]   A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task [J].
Brinker, Titus J. ;
Hekler, Achim ;
Enk, Alexander H. ;
Klode, Joachim ;
Hauschild, Axel ;
Berking, Carola ;
Schilling, Bastian ;
Haferkamp, Sebastian ;
Schadendorf, Dirk ;
Froehling, Stefan ;
Utikal, Jochen S. ;
von Kalle, Christof ;
Ludwig-Peitsch, Wiebke ;
Sirokay, Judith ;
Heinzerling, Lucie ;
Albrecht, Magarete ;
Baratella, Katharina ;
Bischof, Lena ;
Chorti, Eleftheria ;
Dith, Anna ;
Drusio, Christina ;
Giese, Nina ;
Gratsias, Emmanouil ;
Griewank, Klaus ;
Hallasch, Sandra ;
Hanhart, Zdenka ;
Herz, Saskia ;
Hohaus, Katja ;
Jansen, Philipp ;
Jockenhoefer, Finja ;
Kanaki, Theodora ;
Knispel, Sarah ;
Leonhard, Katja ;
Martaki, Anna ;
Matei, Liliana ;
Matull, Johanna ;
Olischewski, Alexandra ;
Petri, Maximilian ;
Placke, Jan-Malte ;
Raub, Simon ;
Salva, Katrin ;
Schlott, Swantje ;
Sody, Elsa ;
Steingrube, Nadine ;
Stoffels, Ingo ;
Ugurel, Selma ;
Sondermann, Wiebke ;
Zaremba, Anne ;
Gebhardt, Christoffer ;
Booken, Nina .
EUROPEAN JOURNAL OF CANCER, 2019, 111 :148-154
[5]   Reflectance Confocal Microscopy for In Vivo Skin Imaging [J].
Calzavara-Pinton, Piergiacomo ;
Longo, Caterina ;
Venturini, Marina ;
Sala, Raffaella ;
Pellacani, Giovanni .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 2008, 84 (06) :1421-1430
[6]   Recognition of Cutaneous Melanoma on Digitized Histopathological SlidesviaArtificial Intelligence Algorithm [J].
De Logu, Francesco ;
Ugolini, Filippo ;
Maio, Vincenza ;
Simi, Sara ;
Cossu, Antonio ;
Massi, Daniela ;
Nassini, Romina ;
Laurino, Marco .
FRONTIERS IN ONCOLOGY, 2020, 10
[7]   CLASSIFICATION OF DERMOSCOPY PATTERNS USING DEEP CONVOLUTIONAL NEURAL NETWORKS [J].
Demyanov, Sergey ;
Chakravorty, Rajib ;
Abedini, Mani ;
Halpern, Alan ;
Garnavi, Rahil .
2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, :364-368
[8]   Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes [J].
Erkol, B ;
Moss, RH ;
Stanley, RJ ;
Stoecker, WV ;
Hvatum, E .
SKIN RESEARCH AND TECHNOLOGY, 2005, 11 (01) :17-26
[9]   Diagnostic image analysis of malignant melanoma in in vivo confocal laser-scanning microscopy:: a preliminary study [J].
Gerger, Armin ;
Wiltgen, Marco ;
Langsenlehner, Uwe ;
Richtig, Erika ;
Horn, Michael ;
Weger, Wolfgang ;
Ahlgrimm-Siess, Verena ;
Hofmann-Wellenhof, Rainer ;
Samonigg, Hellmut ;
Smolle, Josef .
SKIN RESEARCH AND TECHNOLOGY, 2008, 14 (03) :359-363
[10]   Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors [J].
Gerger, Armin ;
Koller, Silvia ;
Weger, Wolfgang ;
Richtig, Erika ;
Kerl, Helmut ;
Samonigg, Hellmut ;
Krippl, Peter ;
Smolle, Josef .
CANCER, 2006, 107 (01) :193-200