On the Szeged index of unicyclic graphs with given diameter

被引:5
作者
Liu, Yan [1 ]
Yu, Aimei [1 ]
Lu, Mei [2 ]
Hao, Rong-Xia [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Szeged index; Wiener index; Unicyclic graph; Diameter; WIENER INDEX;
D O I
10.1016/j.dam.2017.08.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Szeged index of a connected graph G is defined as S-z(G) = Sigma(e=uv is an element of E(G)) n(u)(e|G)n(v)(e|G), where E(G) is the edge set of G, and for any e = uv is an element of E(G), n(u)(e|G) is the number of vertices of G lying closer to vertex u than to v, and n(v)(e|G) is the number of vertices of G lying closer to vertex v than to u. In this paper, we characterize the graph with minimum Szeged index among all the unicyclic graphs with given order and diameter. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:118 / 130
页数:13
相关论文
共 14 条
  • [1] Comparison between the Szeged index and the eccentric connectivity index
    Das, Kinkar Ch.
    Nadjafi-Arani, M. J.
    [J]. DISCRETE APPLIED MATHEMATICS, 2015, 186 : 74 - 86
  • [2] Dobrynin AA, 1997, CROAT CHEM ACTA, V70, P819
  • [3] Gutman I., 1995, J. Serb. Chem. Soc, V60, P759
  • [4] Gutman I., 1994, Graph Theory Notes N. Y., V27, P9
  • [5] A Congruence Relation for Wiener and Szeged Indices
    Gutman, Ivan
    Xu, Kexiang
    Liu, Muhuo
    [J]. FILOMAT, 2015, 29 (05) : 1081 - 1083
  • [6] Szeged index - Applications for drug modeling
    Khadikar, PV
    Karmarkar, S
    Agrawal, VK
    Singh, J
    Shrivastava, A
    Lukovits, I
    Diudea, MV
    [J]. LETTERS IN DRUG DESIGN & DISCOVERY, 2005, 2 (08) : 606 - 624
  • [7] The Szeged and the Wiener index of graphs
    Klavzar, S
    Rajapakse, A
    Gutman, I
    [J]. APPLIED MATHEMATICS LETTERS, 1996, 9 (05) : 45 - 49
  • [8] Bounds for the Sum-Balaban index and (revised) Szeged index of regular graphs
    Lei, Hui
    Yang, Hua
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 : 1259 - 1266
  • [9] Liu HQ, 2008, MATCH-COMMUN MATH CO, V60, P85
  • [10] [任偲睿 Ren Cairui], 2013, [华东理工大学学报. 自然科学版, Journal of East China University of Science and Technoloy. Natural Sciences Edition], V39, P768