High-dimensional posterior consistency of the Bayesian lasso

被引:1
|
作者
Dasgupta, Shibasish [1 ]
机构
[1] Univ S Alabama, Dept Math & Stat, Mobile, AL 36608 USA
关键词
Bayesian lasso; high-dimensional variable selection; orthogonal design; posterior consistency; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION; ORACLE PROPERTIES; LINEAR-MODELS; REGRESSION; SHRINKAGE; PRIORS;
D O I
10.1080/03610926.2014.966840
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers posterior consistency in the context of high-dimensional variable selection using the Bayesian lasso algorithm. In a frequentist setting, consistency is perhaps the most basic property that we expect any reasonable estimator to achieve. However, in a Bayesian setting, consistency is often ignored or taken for granted, especially in more complex hierarchical Bayesian models. In this paper, we have derived sufficient conditions for posterior consistency in the Bayesian lasso model with the orthogonal design, where the number of parameters grows with the sample size.
引用
收藏
页码:6700 / 6708
页数:9
相关论文
共 50 条
  • [41] On Posterior Consistency of Bayesian Factor Models in High Dimensions*
    Ma, Yucong
    Liu, Jun S.
    BAYESIAN ANALYSIS, 2022, 17 (03): : 901 - 929
  • [42] High-dimensional linear discriminant analysis with moderately clipped LASSO
    Chang, Jaeho
    Moon, Haeseong
    Kwon, Sunghoon
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2021, 28 (01) : 21 - 37
  • [43] Moderately clipped LASSO for the high-dimensional generalized linear model
    Lee, Sangin
    Ku, Boncho
    Kown, Sunghoon
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2020, 27 (04) : 445 - 458
  • [44] Introduction to the LASSO A Convex Optimization Approach for High-dimensional Problems
    Gauraha, Niharika
    RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2018, 23 (04): : 439 - 464
  • [45] Adaptive group Lasso for high-dimensional generalized linear models
    Wang, Mingqiu
    Tian, Guo-Liang
    STATISTICAL PAPERS, 2019, 60 (05) : 1469 - 1486
  • [46] Asymptotic properties of Lasso in high-dimensional partially linear models
    Ma Chi
    Huang Jian
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (04) : 769 - 788
  • [47] The joint lasso: high-dimensional regression for group structured data
    Dondelinger, Frank
    Mukherjee, Sach
    BIOSTATISTICS, 2020, 21 (02) : 219 - 235
  • [48] Pathway Lasso: pathway estimation and selection with high-dimensional mediators
    Zhao, Yi
    Luo, Xi
    STATISTICS AND ITS INTERFACE, 2022, 15 (01) : 39 - 50
  • [49] Overlapping group lasso for high-dimensional generalized linear models
    Zhou, Shengbin
    Zhou, Jingke
    Zhang, Bo
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (19) : 4903 - 4917
  • [50] Asymptotic properties of Lasso in high-dimensional partially linear models
    MA Chi
    HUANG Jian
    Science China(Mathematics), 2016, 59 (04) : 769 - 788