High-entropy intermetallics on ceria as efficient catalysts for the oxidative dehydrogenation of propane using CO2

被引:90
作者
Xing, Feilong [1 ]
Ma, Jiamin [1 ]
Shimizu, Ken-ichi [1 ]
Furukawa, Shinya [1 ,2 ]
机构
[1] Hokkaido Univ, Inst Catalysis, N21,W10, Sapporo, Hokkaido 0010021, Japan
[2] Japan Sci & Technol Agcy, PRESTO, Chiyoda Ku, Tokyo 1020076, Japan
关键词
SYNCHRONOUS-TRANSIT METHOD; LIGHT ALKANES; OXYDEHYDROGENATION; PROPYLENE; OLEFINS; ETHANE;
D O I
10.1038/s41467-022-32842-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The oxidative dehydrogenation of propane using CO2 is a promising technique for high-yield propylene production and CO2 utilization. Here the authors report a unique catalyst material and design concept based on high-entropy intermetallics for this challenging chemistry. The oxidative dehydrogenation of propane using CO2 (CO2-ODP) is a promising technique for high-yield propylene production and CO2 utilization. The development of a highly efficient catalyst for CO2-ODP is of great interest and benefit to the chemical industry as well as net zero emissions. Here, we report a unique catalyst material and design concept based on high-entropy intermetallics for this challenging chemistry. A senary (PtCoNi)(SnInGa) catalyst supported on CeO2 with a PtSn intermetallic structure exhibits a considerably higher catalytic activity, C3H6 selectivity, long-term stability, and CO2 utilization efficiency at 600 degrees C than previously reported. Multi-metallization of the Pt and Sn sites by Co/Ni and In/Ga, respectively, greatly enhances propylene selectivity, CO2 activation ability, thermal stability, and regenerable ability. The results obtained in this study can promote carbon-neutralization of industrial processes for light alkane conversion.
引用
收藏
页数:10
相关论文
共 39 条
[1]   CO2 Activation over Catalytic Surfaces [J].
Alvarez, Andrea ;
Borges, Marta ;
Jose Corral-Perez, Juan ;
Giner Olcina, Joan ;
Hu, Lingjun ;
Cornu, Damien ;
Huang, Rui ;
Stoian, Dragos ;
Urakawa, Atsushi .
CHEMPHYSCHEM, 2017, 18 (22) :3135-3141
[2]   New Trends in Olefin Production [J].
Amghizar, Ismael ;
Vandewalle, Laurien A. ;
Van Geem, Kevin M. ;
Marin, Guy B. .
ENGINEERING, 2017, 3 (02) :171-178
[3]   Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure [J].
Ankudinov, AL ;
Ravel, B ;
Rehr, JJ ;
Conradson, SD .
PHYSICAL REVIEW B, 1998, 58 (12) :7565-7576
[4]   Enthalpy of formation of the (Pt-Sn) system [J].
Anres, P ;
Gaune-Escard, M ;
Bros, JP ;
Hayer, E .
JOURNAL OF ALLOYS AND COMPOUNDS, 1998, 280 (1-2) :158-167
[5]   Oxidative dehydrogenation of propane to propylene with carbon dioxide [J].
Atanga, Marktus A. ;
Rezaei, Fateme ;
Jawad, Abbas ;
Fitch, Mark ;
Rownaghi, Ali A. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 220 :429-445
[6]   Dehydrogenation and oxydehydrogenation of paraffins to olefins [J].
Bhasin, MM ;
McCain, JH ;
Vora, BV ;
Imai, T ;
Pujadó, PR .
APPLIED CATALYSIS A-GENERAL, 2001, 221 (1-2) :397-419
[7]   Towards efficient catalysts for the oxidative dehydrogenation of propane in the presence of CO2: Cr/SiO2 systems prepared by direct hydrothermal synthesis [J].
Botavina, M. A. ;
Agafonov, Yu. A. ;
Gaidai, N. A. ;
Groppo, E. ;
Corberan, V. Cortes ;
Lapidus, A. L. ;
Martra, G. .
CATALYSIS SCIENCE & TECHNOLOGY, 2016, 6 (03) :840-850
[8]   Study in support effect of In2O3/MOx (M = Al, Si, Zr) catalysts for dehydrogenation of propane in the presence of CO2 [J].
Chen, Miao ;
Wu, Jia-Ling ;
Liu, Yong-Mei ;
Cao, Yong ;
Guo, Li ;
He, He-Yong ;
Fan, Kang-Nian .
APPLIED CATALYSIS A-GENERAL, 2011, 407 (1-2) :20-28
[9]   Electronic and crystal structure of the high entropy TiZrHfCoNiCu intermetallics undergoing martensitic transformation [J].
Firstov, Georgiy ;
Timoshevski, Andrei ;
Kosorukova, Tetiana ;
Koval, Yuri ;
Matviychuk, Yuri ;
Verhovlyuk, Pavlo .
ESOMAT 2015 - 10TH EUROPEAN SYMPOSIUM ON MARTENSITIC TRANSFORMATIONS, 2015, 33
[10]   GENERAL-METHODS FOR GEOMETRY AND WAVE-FUNCTION OPTIMIZATION [J].
FISCHER, TH ;
ALMLOF, J .
JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (24) :9768-9774