Strategies for Patterning Biomolecules with Dip-Pen Nanolithography

被引:94
作者
Wu, Chien-Ching [1 ]
Reinhoudt, David N. [1 ]
Otto, Cees [2 ]
Subramaniam, Vinod [1 ]
Velders, Aldrik H. [1 ,2 ]
机构
[1] Univ Twente, MESA Inst Nanotechnol, Lab Supramol Chem & Technol, NL-7500 AE Enschede, Netherlands
[2] Univ Twente, MIRA Inst Biomed Technol & Tech Med, NL-7500 AE Enschede, Netherlands
关键词
SCANNING PROBE NANOLITHOGRAPHY; SELF-ASSEMBLED MONOLAYERS; PROTEIN NANOARRAYS; ENZYMATIC NANOLITHOGRAPHY; NANOPATTERNING PROTEINS; MOLECULAR RECOGNITION; OXIDE SURFACES; ION PATTERNS; TAT PEPTIDE; LITHOGRAPHY;
D O I
10.1002/smll.201001749
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Dip-pen nanolithography (DPN) is an atomic force microscopy (AFM)-based lithography technique, which has the ability to fabricate patterns with a feature size down to approximately 15 nm using both top-down and bottom-up approaches. DPN utilizes the water meniscus formed between an AFM tip and a substrate to transfer ink molecules onto surfaces. A major application of this technique is the fabrication of micro-and nano-arrays of patterned biomolecules. To achieve this goal, a variety of chemical approaches has been used. This review concisely describes the development of DPN in the past decade and presents the related chemical strategies that have been reported to fabricate biomolecular paterns with DPN at micrometer and nanometer scale, classified into direct-and indirect DPN methodologies, discussing tip-functionalization strategies as well.
引用
收藏
页码:989 / 1002
页数:14
相关论文
共 110 条
[1]   Dip-pen nanolithography in tapping mode [J].
Agarwal, G ;
Sowards, LA ;
Naik, RR ;
Stone, MO .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (02) :580-583
[2]   Patterning surfaces using tip-directed displacement and self-assembly [J].
Amro, NA ;
Xu, S ;
Liu, GY .
LANGMUIR, 2000, 16 (07) :3006-3009
[3]   A special issue on self-assembled nanomaterials [J].
Ariga, Katsuhiko .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2006, 6 (06)
[4]   Fabrication and visualization of metal-ion patterns on glass by dip-pen nanolithography [J].
Basabe-Desmonts, Lourdes ;
Wu, Chien-Ching ;
van der Werf, Kees O. ;
Peter, Maria ;
Bennink, Martin ;
Otto, Cees ;
Velders, Aldrik H. ;
Reinhoudt, David N. ;
Subramaniam, Vinod ;
Crego-Calama, Mercedes .
CHEMPHYSCHEM, 2008, 9 (12) :1680-1687
[5]   Nanoscale Positioning of Inorganic Nanoparticles using Biological Ferritin Arrays Fabricated by Dip-Pen Nanolithography [J].
Bellido, Elena ;
de Miguel, Rocio ;
Sese, Javier ;
Ruiz-Molina, Daniel ;
Lostao, Anabel ;
Maspoch, Daniel .
SCANNING, 2010, 32 (01) :35-41
[6]   Controlling the Number of Proteins with Dip-Pen Nanolithography [J].
Bellido, Elena ;
de Miguel, Rocio ;
Ruiz-Molina, Daniel ;
Lostao, Anabel ;
Maspoch, Daniel .
ADVANCED MATERIALS, 2010, 22 (03) :352-+
[7]   ATOMIC RESOLUTION WITH ATOMIC FORCE MICROSCOPE [J].
BINNIG, G ;
GERBER, C ;
STOLL, E ;
ALBRECHT, TR ;
QUATE, CF .
EUROPHYSICS LETTERS, 1987, 3 (12) :1281-1286
[8]   Electro Pen Nanolithography [J].
Cai, YG ;
Ocko, BM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (46) :16287-16291
[9]   Fabrication of assembled virus nanostructures on templates of chemoselective linkers formed by scanning probe nanolithography [J].
Cheung, CL ;
Camarero, JA ;
Woods, BW ;
Lin, TW ;
Johnson, JE ;
De Yoreo, JJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (23) :6848-6849
[10]   TAT peptide immobilization on gold surfaces: A comparison study with a thiolated peptide and alkylthiols using AFM, XPS, and FT-IRRAS [J].
Cho, Y ;
Ivanisevic, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (13) :6225-6232