Dynamical system analysis of Myrzakulov gravity

被引:9
|
作者
Papagiannopoulos, G. [1 ]
Basilakos, Spyros [2 ,3 ,4 ]
Saridakis, Emmanuel N. [2 ,5 ,6 ]
机构
[1] Natl & Kapodistrian Univ Athens, Dept Phys, Zografou Campus, Athens 15773, Greece
[2] Natl Observ Athens, Lofos Nymfon 11852, Athens, Greece
[3] Acad Athens, Res Ctr Astron & Appl Math, Soranou Efesiou 4, Athens 11527, Greece
[4] European Univ Cyprus, Sch Sci, Diogenes St, CY-1516 Engomi, Nicosia, Cyprus
[5] Univ Sci & Technol China, Dept Astron, CAS Key Lab Res Galaxies & Cosmol, Hefei 230026, Anhui, Peoples R China
[6] Univ Catolica Norte, Dept Matemat, Ave Angamos 0610,Casilla 1280, Antofagasta, Chile
关键词
FIELD-EQUATIONS; COSMOLOGY; SPACE; F(R;
D O I
10.1103/PhysRevD.106.103512
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We perform a dynamical system analysis of Myrzakulov or F(R, T) gravity, which is a subclass of affinely connected metric theories, where ones uses a specific but nonspecial connection that allows for nonzero curvature and torsion simultaneously. We consider two classes of models, extract the critical points, and examine their stability properties alongside their physical features. In the class 1 models, which possess ? cold dark matter (CDM) cosmology as a limit, we find the sequence of matter and dark energy eras, and we show that the Universe will result in a dark-energy-dominated critical point for which dark energy behaves like a cosmological constant. Concerning the dark energy equation-of-state parameter, we find that it lies in the quintessence or phantom regime, according to the value of the model parameter. For the class 2 models, we again find the dark-energy-dominated, de Sitter late-time attractor, although the scenario does not possess ?CDM cosmology as a limit. The cosmological behavior is richer, and the dark energy sector can be quintessencelike, phantomlike, or experience the phantom-divide crossing during the evolution.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Observational constraints on Myrzakulov gravity
    Anagnostopoulos, Fotios K.
    Basilakos, Spyros
    Saridakis, Emmanuel N.
    PHYSICAL REVIEW D, 2021, 103 (10)
  • [2] Metric-Affine Myrzakulov Gravity Theories
    Myrzakulov, Nurgissa
    Myrzakulov, Ratbay
    Ravera, Lucrezia
    SYMMETRY-BASEL, 2021, 13 (10):
  • [3] A dynamical system analysis of f(R, T) gravity
    Mirza, Behrouz
    Oboudiat, Fatemeh
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2016, 13 (09)
  • [4] Metric-Affine Myrzakulov Gravity Theories: Models, Applications and Theoretical Developments
    Momeni, Davood
    Myrzakulov, Ratbay
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2025, 64 (04)
  • [5] Dynamical system analysis of generalized energy-momentum-squared gravity
    Bahamonde, Sebastian
    Marciu, Mihai
    Rudra, Prabir
    PHYSICAL REVIEW D, 2019, 100 (08)
  • [6] Dynamical system analysis of modified chaplygin gas in Einstein-Aether gravity
    Ranjit, Chayan
    Rudra, Prabir
    Kundu, Sujata
    EUROPEAN PHYSICAL JOURNAL PLUS, 2014, 129 (10): : 1 - 12
  • [7] A dynamical system representation of generalized Rastall gravity
    Shabani, Hamid
    Moradpour, Hooman
    Ziaie, Amir Hadi
    PHYSICS OF THE DARK UNIVERSE, 2022, 36
  • [8] Dynamical system analysis for accelerating models in non-metricity f(Q) gravity
    Narawade, S. A.
    Pati, Laxmipriya
    Mishra, B.
    Tripathy, S. K.
    PHYSICS OF THE DARK UNIVERSE, 2022, 36
  • [9] A note on the dynamical system formulations in f(R) gravity
    Chakraborty, Saikat
    Dunsby, Peter K. S.
    Macdevette, Kelly
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2022, 19 (08)
  • [10] Cosmological study in Myrzakulov F(R, T) quasi-dilaton massive gravity
    Kazempour, Sobhan
    Akbarieh, Amin Rezaei
    ASTROPARTICLE PHYSICS, 2025, 165