Compacton solutions and (non)integrability of nonlinear evolutionary PDEs associated with a chain of prestressed granules

被引:7
作者
Sergyeyev, A. [1 ]
Skurativskyi, S. [2 ]
Vladimirov, V. [3 ]
机构
[1] Silesian Univ Opava, Math Inst, Rybnicku 1, Opava 74601, Czech Republic
[2] Subbotin Inst Geophys NAS Ukraine, Acad Palladina Ave 32, UA-03142 Kiev, Ukraine
[3] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
关键词
Chains of pre-stressed granules; Compactons; Integrable systems; Conservation laws; Stability test; Numerical simulation; CONSERVATION-LAWS; SOLITARY WAVES; TRAVELING-WAVES; EQUATIONS; SYMMETRIES; OPERATOR; SOLITONS;
D O I
10.1016/j.nonrwa.2018.09.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the results of study of a nonlinear evolutionary PDE (more precisely, a one-parameter family of PDEs) associated with the chain of pre-stressed granules. The PDE in question supports solitary waves of compression and rarefaction (bright and dark compactons) and can be written in Hamiltonian form. We investigate inter alia integrability properties of this PDE and its generalized symmetries and conservation laws. For the compacton solutions we perform a stability test followed by the numerical study. In particular, we simulate the temporal evolution of a single compacton, and the interactions of compacton pairs. The results of numerical simulations performed for our model are compared with the numerical evolution of corresponding Cauchy data for the discrete model of chain of pre-stressed elastic granules. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:68 / 84
页数:17
相关论文
共 55 条
[1]   Compactons and chaos in strongly nonlinear lattices [J].
Ahnert, Karsten ;
Pikovsky, Arkady .
PHYSICAL REVIEW E, 2009, 79 (02)
[2]  
[Anonymous], 1993, DIRAC STRUCTURES INT
[3]   On some applications of transformation groups to a class of nonlinear dispersive equations [J].
Bruzon, M. S. ;
Gandarias, M. L. ;
Torrisi, M. ;
Tracina, R. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (03) :1139-1151
[4]   Ordering of two small parameters in the shallow water wave problem [J].
Burde, Georgy I. ;
Sergyeyev, Artur .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (07)
[5]   REDUCTION TECHNIQUE FOR MATRIX NON-LINEAR EVOLUTION-EQUATIONS SOLVABLE BY THE SPECTRAL TRANSFORM [J].
CALOGERO, F ;
DEGASPERIS, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (01) :23-31
[6]   Nontrivial 1-parameter families of zero-curvature representations obtained via symmetry actions [J].
Catalano Ferraioli, D. ;
de Oliveira Silva, L. A. .
JOURNAL OF GEOMETRY AND PHYSICS, 2015, 94 :185-198
[7]   Compacton formation under Allen-Cahn dynamics [J].
Cirillo, E. N. M. ;
Ianiro, N. ;
Sciarra, G. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2188)
[8]   Solitary waves in a chain of beads under Hertz contact [J].
Coste, C ;
Falcon, E ;
Fauve, S .
PHYSICAL REVIEW E, 1997, 56 (05) :6104-6117
[9]   Energy trapping and shock disintegration in a composite granular medium [J].
Daraio, C ;
Nesterenko, VF ;
Herbold, EB ;
Jin, S .
PHYSICAL REVIEW LETTERS, 2006, 96 (05)
[10]   A FINITE-DIFFERENCE SCHEME FOR THE K(2,2) COMPACTON EQUATION [J].
DEFRUTOS, J ;
LOPEZMARCOS, MA ;
SANZSERNA, JM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 120 (02) :248-252