ABC: A Big CAD Model Dataset For Geometric Deep Learning

被引:306
作者
Koch, Sebastian [1 ]
Matveev, Albert [2 ]
Jiang, Zhongshi [3 ]
Williams, Francis [3 ]
Artemov, Alexey [4 ]
Burnaev, Evgeny [4 ]
Alexa, Marc [1 ]
Zorin, Denis [3 ]
Panozzo, Daniele [3 ]
机构
[1] TU Berlin, Berlin, Germany
[2] Skoltech, IITP, Moscow, Russia
[3] NYU, New York, NY 10003 USA
[4] Skoltech, Moscow, Russia
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
基金
俄罗斯科学基金会; 美国国家科学基金会;
关键词
ROBUST NORMAL ESTIMATION;
D O I
10.1109/CVPR.2019.00983
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce ABC-Dataset, a collection of one million Computer-Aided Design (CAD) models for research of geometric deep learning methods and applications. Each model is a collection of explicitly parametrized curves and surfaces, providing ground truth for differential quantities, patch segmentation, geometric feature detection, and shape reconstruction. Sampling the parametric descriptions of surfaces and curves allows generating data in different formats and resolutions, enabling fair comparisons for a wide range of geometric learning algorithms. As a use case for our dataset, we perform a large-scale benchmark for estimation of surface normals, comparing existing data driven methods and evaluating their performance against both the ground truth and traditional normal estimation methods.
引用
收藏
页码:9593 / 9603
页数:11
相关论文
共 53 条
[1]  
Alliez Pierre., 2018, CGAL USER REFERENCE, V4.13
[2]  
[Anonymous], 2015, SHAPENET INFORM RICH
[3]  
[Anonymous], 2018, ABS180107829 CORR
[4]  
[Anonymous], 2017, IEEE C COMP VIS PATT
[5]  
[Anonymous], ABS180107791 CORR
[6]  
[Anonymous], CGAL USER REFERENCE
[7]  
[Anonymous], 2014, CVPR
[8]  
[Anonymous], 2018, P IEEE C COMP VIS PA
[9]  
[Anonymous], CVPR 2018
[10]  
[Anonymous], 2017, IEEE P COMPUT VIS PA, DOI DOI 10.1109/CVPR.2017.16