Seismic Evidence for Lateral Asthenospheric Flow Beneath the Northeastern Tibetan Plateau Derived From S Receiver Functions

被引:19
|
作者
Xu, Qiang [1 ,2 ]
Pei, Shunping [1 ]
Yuan, Xiaohui [3 ]
Zhao, Junmeng [1 ,2 ]
Liu, Hongbing [1 ,2 ]
Tu, Hongwei [4 ]
Chen, Shuze [1 ]
机构
[1] Chinese Acad Sci, Inst Tibetan Plateau Res, Key Lab Continental Collis & Plateau Uplift, Beijing, Peoples R China
[2] CAS Ctr Excellence Tibetan Plateau Earth Sci, Beijing, Peoples R China
[3] Deutsch GeoForschungsZentrum GFZ, Potsdam, Germany
[4] Earthquake Adm Qianghai, Xining, Qinghai, Peoples R China
基金
中国国家自然科学基金;
关键词
S receiver functions; depth migration technique; LAB; northeastern Tibetan Plateau; asthenospheric flow; MANTLE STRUCTURE BENEATH; ASIAN LITHOSPHERE; QILIAN SHAN; CRUSTAL; MARGIN; DEFORMATION; ANISOTROPY; DISCONTINUITY; SUBDUCTION; DYNAMICS;
D O I
10.1029/2018GC007986
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present detailed lithospheric images of the NE Tibetan Plateau by applying the depth migration technique to S receiver functions derived from 113 broadband stations. Our migrated images indicate that the lithosphere-asthenosphere boundary (LAB) lies at depths of 105-120km beneath the Qilian terrane and reaches depths of 126-140km below the Alxa and Ordos blocks. The most prominent variation in the LAB depth is the presence of LAB steps of no less than 20km in the transition zone between the active NE Tibetan Plateau and the surrounding cratonic Alxa and Ordos blocks, which conflicts with the model of southward subduction of the Alxa and Ordos blocks. Furthermore, the marked LAB steps occur at 13010km away from the southern surficial boundary faults between the NE Tibetan Plateau and the surrounding tectonic provinces, corresponding to the North Qilian fault and the Liupanshan fault, respectively. Therefore, we propose that these scenarios of LAB can be attributed to the delamination of fragmented mantle lithosphere in the transition zone between the NE Tibetan Plateau and the surrounding Alxa and Ordos blocks, triggered by lateral asthenospheric flow. In addition, our observations of a thin lithosphere with thickness of 107-115km beneath the Songpan-Ganzi terrane and the west Qinlin orogen greatly facilitate the process of underlying lateral asthenospheric flow. The isostatic uplift of the plateau caused by the delamination of fragmented mantle lithosphere, together with increased horizontal compressive stress, may have led to the outward growth of the NE Tibetan Plateau.
引用
收藏
页码:883 / 894
页数:12
相关论文
共 50 条
  • [21] Crustal anisotropy in northeastern Tibetan Plateau inferred from receiver functions: Rock textures caused by metamorphic fluids and lower crust flow?
    Liu, Zhen
    Park, Jeffrey
    Rye, Danny M.
    TECTONOPHYSICS, 2015, 661 : 66 - 80
  • [22] Seismic anisotropy beneath the eastern margin of the Tibetan Plateau from SKS splitting observations
    Liu, Jing
    Wu, Jianping
    Wang, Weilai
    Fang, Lihua
    Chang, Kai
    TECTONOPHYSICS, 2020, 785 (785)
  • [23] Constraining the sub-surface S-wave velocity of the northeastern margin of Tibetan Plateau with receiver functions
    Qian YinPing
    Shen XuZhang
    Li CuiQin
    Mei XiuPing
    Jiao YuYuan
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2018, 61 (10): : 3951 - 3963
  • [24] Anisotropic low-velocity lower crust beneath the northeastern margin of Tibetan Plateau: Evidence for crustal channel flow
    Shen, Xuzhang
    Yuan, Xiaohui
    Ren, Junsheng
    GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2015, 16 (12) : 4223 - 4236
  • [25] Distinct lateral contrast of the crustal and upper mantle structure beneath northeast Tibetan plateau from receiver function analysis
    Xu, Qiang
    Zhao, Junmeng
    Pei, Shunping
    Liu, Hongbing
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2013, 217 : 1 - 9
  • [26] Lithospheric SH Wave Velocity Structure Beneath the Northeastern Tibetan Plateau From Love Wave Tomography
    Fu, Yuanyuan V.
    Li, Lun
    Xiao, Zhuo
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2019, 124 (09) : 9682 - 9693
  • [27] Lithospheric thickness and upper-mantle deformation beneath the NE Tibetan Plateau inferred from S receiver functions and SKS splitting measurements
    Zhang, Hongshuang
    Teng, Jiwen
    Tian, Xiaobo
    Zhang, Zhongjie
    Gao, Rui
    Liu, Jiaqi
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2012, 191 (03) : 1285 - 1294
  • [28] Radial Anisotropy in the Crust beneath the Northeastern Tibetan Plateau from Ambient Noise Tomography
    Tan, Jing
    Li, Hongyi
    Li, Xinfu
    Zhou, Ming
    Ouyang, Longbin
    Sun, Sanjian
    Zheng, Dan
    JOURNAL OF EARTH SCIENCE, 2015, 26 (06) : 864 - 871
  • [29] Radial Anisotropy in the Crust beneath the Northeastern Tibetan Plateau from Ambient Noise Tomography
    Jing Tan
    Hongyi Li
    Xinfu Li
    Ming Zhou
    Longbin Ouyang
    Sanjian Sun
    Dan Zheng
    Journal of Earth Science, 2015, 26 (06) : 864 - 871
  • [30] Radial anisotropy in the crust beneath the northeastern Tibetan Plateau from ambient noise tomography
    Jing Tan
    Hongyi Li
    Xinfu Li
    Ming Zhou
    Longbin Ouyang
    Sanjian Sun
    Dan Zheng
    Journal of Earth Science, 2015, 26 : 864 - 871