Number of points of bounded height of a certain singular cubic surface

被引:0
作者
de la Bretèche, R [1 ]
机构
[1] Univ Paris 11, Dept Math, F-91405 Orsay, France
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By complex integration methods, we prove a very precise asymptotic formula about the number of rational points of height at most X on a certain toric variety. We estimate the cardinality V(X) := card{(x, y, z, t) is an element of (N boolean AND [1, X])(4) : (x, y, z, t) = 1 : xyz = t(3)}. Let N(X) := (log X)(3/5)(log(2) X)(-1/5). Then there exists a polynomial Q is an element of R[X] of degree 6 and a constant c > 0 such that, for X --> +infinity, we have V(X) = XQ(log X) + O(X1-1/8 exp{-cN(X)}). Futhermore, the leading coefficient of Q is 1/4 x 6! Pi p{(1 - 1/p)(7) (1 + 7/p + 1/p(2))}.
引用
收藏
页码:51 / +
页数:28
相关论文
共 9 条
[1]  
BATYREV V.V., 1996, J. Math. Sci., V82, P3220
[2]  
Batyrev VV, 1996, CR ACAD SCI I-MATH, V323, P41
[3]  
BATYREV VV, IN PRESS J ALGEBRAIC
[4]  
FULTON W, 1993, ANN MATH STUDIES, V131
[5]  
Ivi A., 1985, The Riemann zeta-function
[6]  
Oda T., 1988, CONVEX BODIES ALGEBR
[7]   HEIGHTS AND TAMAGAWA MEASURES ON FANO VARIETIES [J].
PEYRE, E .
DUKE MATHEMATICAL JOURNAL, 1995, 79 (01) :101-218
[8]  
SCHANUEL SH, 1979, B SOC MATH FR, V107, P433
[9]  
TEENBAUM G, 1995, INTRO THEORIE ANAL P