On the error in computing Lyapunov exponents by QR Methods

被引:32
作者
Dieci, L [1 ]
Van Vleck, ES
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
关键词
65L;
D O I
10.1007/s00211-005-0644-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the error introduced using QR methods to approximate Lyapunov exponents. We give a backward error statement for linear non-autonomous systems, and further discuss nonlinear autonomous problems. In particular, for linear systems we show that one approximates a "nearby" discontinuous problem where how nearby is measured in terms of local errors and a measure of non-normality. For nonlinear problems we use a type of shadowing result.
引用
收藏
页码:619 / 642
页数:24
相关论文
共 23 条
[1]  
[Anonymous], PRESERVATION STABILI
[2]  
[Anonymous], 1995, MATH MONOGRAPHS
[3]  
ARNOLD L, 1991, P OB 1990, V1486
[4]  
Arnold L., 1986, LECT NOTES MATH, V1186
[5]  
Benettin G, 1980, MECCANICA, V15, P21
[6]  
Benettin G., 1980, Meccanica, V15, P21, DOI [DOI 10.1007/BF02128237, 10.1007/BF02128237]
[7]  
Bylov B. F., 1969, DIFF EQUAT+, V5, P1794
[8]   GLOBAL LYAPUNOV EXPONENTS, KAPLAN-YORKE FORMULAS AND THE DIMENSION OF THE ATTRACTORS FOR 2D NAVIER-STOKES EQUATIONS [J].
CONSTANTIN, P ;
FOIAS, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (01) :1-27
[9]   On the computation of Lyapunov exponents for continuous dynamical systems [J].
Dieci, L ;
Russell, RD ;
VanVleck, ES .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (01) :402-423
[10]   Lyapunov spectral intervals: Theory and computation [J].
Dieci, L ;
Van Vleck, ES .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (02) :516-542