Axiomatizability of positive algebras of binary relations

被引:32
作者
Andreka, Hajnal [1 ]
Mikulas, Szabolcs [2 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1053 Budapest, Hungary
[2] Univ London, Dept Comp Sci & Informat Syst, London WC1E 7HX, England
关键词
representable relation algebras; finite axiomatizability; ordered semigroups; KLEENE ALGEBRAS; ORDERED MONOIDS; CONVERSION; VARIETY;
D O I
10.1007/s00012-011-0142-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider all positive fragments of Tarski's representable relation algebras and determine whether the equational and quasiequational theories of these fragments are finitely axiomatizable in first-order logic. We also look at extending the signature with reflexive, transitive closure and the residuals of composition.
引用
收藏
页码:7 / 34
页数:28
相关论文
共 27 条
[1]   THE EQUATIONAL THEORY OF UNION-FREE ALGEBRAS OF RELATIONS [J].
ANDREKA, H ;
BREDIKHIN, DA .
ALGEBRA UNIVERSALIS, 1995, 33 (04) :516-532
[2]   Axiomatization of identity-free equations valid in relation algebras [J].
Andreka, H ;
Nemeti, I .
ALGEBRA UNIVERSALIS, 1996, 35 (02) :256-264
[3]   REPRESENTATIONS OF DISTRIBUTIVE LATTICE-ORDERED SEMIGROUPS WITH BINARY RELATIONS [J].
ANDREKA, H .
ALGEBRA UNIVERSALIS, 1991, 28 (01) :12-25
[4]  
Andreka H., 1994, Journal of Logic, Language and Information, V3, P1, DOI 10.1007/BF01066355
[5]  
Andreka H., 2001, Handbook of Philosophical Logic, V2, P133
[6]  
[Anonymous], LOGICS AI
[7]  
[Anonymous], ABSTR AM MATH SOC
[8]  
Bredikhin D A, 1993, IZV VYSSH UCHEBN ZAV, P23
[9]  
Bredikhin D.A., 1978, C MATH, V39, P1, DOI DOI 10.4064/CM-39-1-1-12
[10]  
Conway J.H., 1971, Regular Algebra and Finite Machines