The inverse eigenvalue problem for symmetric doubly stochastic matrices

被引:25
作者
Hwang, SG [1 ]
Pyo, SS
机构
[1] Kyungpook Natl Univ, Dept Math Educ, Taegu 702701, South Korea
[2] Kyungpook Natl Univ, Sch Elect Engn & Comp Sci, Taegu 702701, South Korea
关键词
D O I
10.1016/S0024-3795(03)00366-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a positive integer n and for a real number s, let Gamma(n)(s), denote the set of all n x n real matrices whose rows and columns have sum s. In this note, by an explicit constructive method, we prove the following (i) Given any real n-tuple Lambda = (lambda(1), lambda(2),...lambda(n))(T), there exists a symmetric matrix in Gamma(n)(lambda1) whose spectrum is Lambda. (ii) For a real n-tuple Lambda = (1, lambda(2),...lambda(n))(T) with 1 greater than or equal to lambda(2) greater than or equal to lambda(n), if 1/n + lambda(2)/n(n-1) + lambda(3)/n(n-2) + ... + lambda(n)/2(.)1 greater than or equal to 0, then there exists a symmetric doubly stochastic matrix whose spectrum is Lambda. The second assertion enables us to show that for any lambda(2),...,lambda(n) is an element of [-1/(n-1), 1], there is a symmetric doubly stochastic matrix whose spectrum is (1, lambda(2),...,lambda(n))(T) and also that any number beta is an element of (- 1, 1] is an eigenvalue of a symmetric positive doubly stochastic matrix of any order. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:77 / 83
页数:7
相关论文
共 5 条
[1]  
Borobia A, 1995, LINEAR ALGEBRA APPL, V223-224, P131
[2]  
Fiedler M., 1974, Linear Algebra and Its Applications, V9, P119, DOI 10.1016/0024-3795(74)90031-7
[3]  
Horn R. A., 1986, Matrix analysis
[4]  
Kellogg R.B., 1971, LINEAR ALGEBRA APPL, V4, P191
[5]  
Salzmann F.L., 1972, LINEAR ALGEBRA APPL, V5, P329