Three-dimensional high-resolution quantitative microscopy of extended crystals

被引:120
|
作者
Godard, P. [1 ]
Carbone, G. [2 ]
Allain, M. [1 ]
Mastropietro, F. [2 ,3 ]
Chen, G. [4 ]
Capello, L. [5 ]
Diaz, A. [2 ]
Metzger, T. H. [2 ]
Stangl, J. [4 ]
Chamard, V. [1 ]
机构
[1] Aix Marseille Univ, Inst Fresnel, CNRS, FST St Jerome, F-13397 Marseille 20, France
[2] European Synchrotron Radiat Facil, F-38043 Grenoble, France
[3] CEA Grenoble, Inst Nanosci & Cryogenie, Lab Nanostruct & Rayonnement Synchrotron SP2M, F-38054 Grenoble 9, France
[4] Johannes Kepler Univ Linz, Inst Semicond & Solid State Phys, A-4040 Linz, Austria
[5] Soitec SA, F-38190 Bernin, France
来源
NATURE COMMUNICATIONS | 2011年 / 2卷
关键词
X-RAY-DIFFRACTION; STRAIN;
D O I
10.1038/ncomms1569
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hard X-ray lens-less microscopy raises hopes for a non-invasive quantitative imaging, capable of achieving the extreme resolving power demands of nanoscience. However, a limit imposed by the partial coherence of third generation synchrotron sources restricts the sample size to the micrometer range. Recently, X-ray ptychography has been demonstrated as a solution for arbitrarily extending the field of view without degrading the resolution. Here we show that ptychography, applied in the Bragg geometry, opens new perspectives for crystalline imaging. The spatial dependence of the three-dimensional Bragg peak intensity is mapped and the entire data subsequently inverted with a Bragg-adapted phase retrieval ptychographical algorithm. We report on the image obtained from an extended crystalline sample, nanostructured from a silicon-on-insulator substrate. The possibility to retrieve, without transverse size restriction, the highly resolved three-dimensional density and displacement field will allow for the unprecedented investigation of a wide variety of crystalline materials, ranging from life science to microelectronics.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Three-dimensional high-resolution quantitative microscopy of extended crystals
    P. Godard
    G. Carbone
    M. Allain
    F. Mastropietro
    G. Chen
    L. Capello
    A. Diaz
    T.H. Metzger
    J. Stangl
    V. Chamard
    Nature Communications, 2
  • [2] High-Resolution Three-Dimensional X-Ray Microscopy
    Bennett C. Larson
    Bruno Lengeler
    MRS Bulletin, 2004, 29 : 152 - 156
  • [3] High-resolution three-dimensional x-ray microscopy
    Larson, BC
    Lengeler, B
    MRS BULLETIN, 2004, 29 (03) : 152 - 154
  • [4] Three-dimensional motion tracking for high-resolution optical microscopy, in vivo
    Bakalar, M.
    Schroeder, J. L.
    Pursley, R.
    Pohida, T. J.
    Glancy, B.
    Taylor, J.
    Chess, D.
    Kellman, P.
    Xue, H.
    Balaban, R. S.
    JOURNAL OF MICROSCOPY, 2012, 246 (03) : 237 - 247
  • [5] High-resolution electron microscopy of extended defects in wurtzite crystals
    Suzuki, Kunio, 1600, Publ by JJAP, Minato-ku, Japan (33):
  • [6] Three-dimensional imaging of YB56 by high-resolution electron microscopy
    Oku, T
    CHEMICAL COMMUNICATIONS, 2002, (04) : 302 - 303
  • [7] Optical scanning holography as a technique for high-resolution three-dimensional biological microscopy
    Swoger, J
    Martínez-Corral, M
    Huisken, J
    Stelzer, EHK
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2002, 19 (09): : 1910 - 1918
  • [8] Yeast kinetochore microtubule dynamics analyzed by high-resolution three-dimensional microscopy
    Dorn, JF
    Jaqaman, K
    Rines, DR
    Jelson, GS
    Sorger, PK
    Danuser, G
    BIOPHYSICAL JOURNAL, 2005, 89 (04) : 2835 - 2854
  • [9] High-resolution three-dimensional imaging of dislocations
    Barnard, J. S.
    Sharp, J.
    Tong, J. R.
    Midgley, P. A.
    SCIENCE, 2006, 313 (5785) : 319 - 319
  • [10] Influence of refractive-index mismatch in high-resolution three-dimensional confocal microscopy
    Diaspro, A
    Federici, F
    Robello, M
    APPLIED OPTICS, 2002, 41 (04) : 685 - 690