Prime factors of dynamical sequences

被引:21
作者
Faber, Xander [1 ]
Granville, Andrew [2 ]
机构
[1] McGill Univ, Montreal, PQ H3A 2K6, Canada
[2] Univ Montreal, Montreal, PQ H3C 3J7, Canada
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2011年 / 661卷
基金
加拿大自然科学与工程研究理事会;
关键词
ARITHMETIC DYNAMICS; DIVISORS; POLYNOMIALS;
D O I
10.1515/CRELLE.2011.081
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let phi(t) is an element of Q(t) have degree d >= 2. For a given rational number x(0), define x(n+1) = phi(x(n)) for each n >= 0. If this sequence is not eventually periodic, and if phi does not lie in one of two explicitly determined affine conjugacy classes of rational functions, then x(n+1) - x(n) has a primitive prime factor in its numerator for all sufficiently large n. The same result holds for the exceptional maps provided that one looks for primitive prime factors in the denominator of x(n+1) - x(n) Hence the result for each rational function f of degree at least 2 implies (a new proof) that there are infinitely many primes. The question of primitive prime factors of x(n+Delta) - x(n) is also discussed for D uniformly bounded.
引用
收藏
页码:189 / 214
页数:26
相关论文
共 12 条
[1]  
Baker IN., 1964, J. Lond. Math. Soc, V2, P615, DOI [10.1112/jlms/s1-39.1.615, DOI 10.1112/JLMS/S1-39.1.615]
[2]  
Bombieri E., 2006, NEW MATH MONOGR, V4
[3]   On the numerical factors of the arithmetic forms alpha(n +/-) beta (n) . [J].
Carmichael, RD .
ANNALS OF MATHEMATICS, 1913, 15 :30-48
[4]  
Hindry M, 2000, GRADUATE TEXTS MATH
[5]   Primitive divisors in arithmetic dynamics [J].
Ingram, Patrick ;
Silverman, Joseph H. .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2009, 146 :289-302
[6]   The density of prime divisors in the arithmetic dynamics of quadratic polynomials [J].
Jones, Rafe .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 78 :523-544
[7]   ON SOME EXCEPTIONAL RATIONAL MAPS [J].
KISAKA, M .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1995, 71 (02) :35-38
[8]  
MILNOR J, 2000, INTRO LECT
[9]  
ODONI RWK, 1985, J LOND MATH SOC, V32, P1
[10]  
ODONI RWK, 1985, P LOND MATH SOC, V51, P385