Inferring directed networks using a rank-based connectivity measure

被引:12
作者
Leguia, Marc G. [1 ,2 ]
Martinez, Cristina G. B. [2 ]
Malvestio, Irene [2 ,3 ,4 ]
Campo, Adria Tauste [5 ,6 ,7 ]
Rocamora, Rodrigo [6 ,8 ]
Levnajic, Zoran [1 ,9 ]
Andrzejak, Ralph G. [2 ,10 ]
机构
[1] Fac Informat Studies, Novo Mesto 8000, Slovenia
[2] Univ Pompeu Fabra, Dept Commun & Informat Technol, Barcelona 08018, Spain
[3] Univ Florence, Dept Phys & Astron, I-50119 Sesto Fiorentino, Italy
[4] CNR, Inst Complex Syst, I-50119 Sesto Fiorentino, Italy
[5] Univ Pompeu Fabra, Dept Informat & Commun Technol, Ctr Brain & Cognit, Barcelona 08018, Spain
[6] Univ Pompeu Fabra, IMIM Hosp del Mar, Dept Neurol, Epilepsy Unit, Barcelona 08003, Spain
[7] Pasqual Maragall Fdn, Barcelonasseta Brain Res Ctr, Barcelona 08005, Spain
[8] Univ Pompeu Fabra, Fac Hlth & Life Sci, Barcelona 08003, Spain
[9] Inst Jozef Stefan, Ljubljana 1000, Slovenia
[10] Barcelona Inst Sci & Technol, Inst Bioengn Catalonia IBEC, Baldiri Reixac 10-12, Barcelona 08028, Spain
基金
欧盟地平线“2020”;
关键词
TIME-SERIES; CAUSALITY; INFERENCE; SEIZURES;
D O I
10.1103/PhysRevE.99.012319
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Inferring the topology of a network using the knowledge of the signals of each of the interacting units is key to understanding real-world systems. One way to address this problem is using data-driven methods like cross-correlation or mutual information. However, these measures lack the ability to distinguish the direction of coupling. Here, we use a rank-based nonlinear interdependence measure originally developed for pairs of signals. This measure not only allows one to measure the strength but also the direction of the coupling. Our results for a system of coupled Lorenz dynamics show that we are able to consistently infer the underlying network for a subrange of the coupling strength and link density. Furthermore, we report that the addition of dynamical noise can benefit the reconstruction. Finally, we show an application to multichannel electroencephalographic recordings from an epilepsy patient.
引用
收藏
页数:10
相关论文
共 49 条
[21]   Ictal propagation of high frequency activity is recapitulated in interictal recordings: Effective connectivity of epileptogenic networks recorded with intracranial EEG [J].
Korzeniewska, A. ;
Cervenka, M. C. ;
Jouny, C. C. ;
Perilla, J. R. ;
Harezlak, J. ;
Bergey, G. K. ;
Franaszczuk, P. J. ;
Crone, N. E. .
NEUROIMAGE, 2014, 101 :96-113
[22]   Discrimination of coupling structures using causality networks from multivariate time series [J].
Koutlis, Christos ;
Kugiumtzis, Dimitris .
CHAOS, 2016, 26 (09)
[23]   Partial transfer entropy on rank vectors [J].
Kugiumtzis, D. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (02) :401-420
[24]   Direct-coupling information measure from nonuniform embedding [J].
Kugiumtzis, D. .
PHYSICAL REVIEW E, 2013, 87 (06)
[25]   Coupling strength versus coupling impact in nonidentical bidirectionally coupled dynamics [J].
Laiou, Petroula ;
Andrzejak, Ralph G. .
PHYSICAL REVIEW E, 2017, 95 (01)
[26]   Evolutionary optimization of network reconstruction from derivative-variable correlations [J].
Leguia, Marc G. ;
Andrzejak, Ralph G. ;
Levnajic, Zoran .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (33)
[27]   Untangling complex dynamical systems via derivative-variable correlations [J].
Levnajic, Zoran ;
Pikovsky, Arkady .
SCIENTIFIC REPORTS, 2014, 4
[28]   Network Reconstruction from Random Phase Resetting [J].
Levnajic, Zoran ;
Pikovsky, Arkady .
PHYSICAL REVIEW LETTERS, 2011, 107 (03)
[29]   Robustness and versatility of a nonlinear interdependence method for directional coupling detection from spike trains [J].
Malvestio, Irene ;
Kreuz, Thomas ;
Andrzejak, Ralph G. .
PHYSICAL REVIEW E, 2017, 96 (02)
[30]   Causal network inference using biochemical kinetics [J].
Oates, Chris J. ;
Dondelinger, Frank ;
Bayani, Nora ;
Korkola, James ;
Gray, Joe W. ;
Mukherjee, Sach .
BIOINFORMATICS, 2014, 30 (17) :I468-I474