Inferring directed networks using a rank-based connectivity measure

被引:12
作者
Leguia, Marc G. [1 ,2 ]
Martinez, Cristina G. B. [2 ]
Malvestio, Irene [2 ,3 ,4 ]
Campo, Adria Tauste [5 ,6 ,7 ]
Rocamora, Rodrigo [6 ,8 ]
Levnajic, Zoran [1 ,9 ]
Andrzejak, Ralph G. [2 ,10 ]
机构
[1] Fac Informat Studies, Novo Mesto 8000, Slovenia
[2] Univ Pompeu Fabra, Dept Commun & Informat Technol, Barcelona 08018, Spain
[3] Univ Florence, Dept Phys & Astron, I-50119 Sesto Fiorentino, Italy
[4] CNR, Inst Complex Syst, I-50119 Sesto Fiorentino, Italy
[5] Univ Pompeu Fabra, Dept Informat & Commun Technol, Ctr Brain & Cognit, Barcelona 08018, Spain
[6] Univ Pompeu Fabra, IMIM Hosp del Mar, Dept Neurol, Epilepsy Unit, Barcelona 08003, Spain
[7] Pasqual Maragall Fdn, Barcelonasseta Brain Res Ctr, Barcelona 08005, Spain
[8] Univ Pompeu Fabra, Fac Hlth & Life Sci, Barcelona 08003, Spain
[9] Inst Jozef Stefan, Ljubljana 1000, Slovenia
[10] Barcelona Inst Sci & Technol, Inst Bioengn Catalonia IBEC, Baldiri Reixac 10-12, Barcelona 08028, Spain
基金
欧盟地平线“2020”;
关键词
TIME-SERIES; CAUSALITY; INFERENCE; SEIZURES;
D O I
10.1103/PhysRevE.99.012319
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Inferring the topology of a network using the knowledge of the signals of each of the interacting units is key to understanding real-world systems. One way to address this problem is using data-driven methods like cross-correlation or mutual information. However, these measures lack the ability to distinguish the direction of coupling. Here, we use a rank-based nonlinear interdependence measure originally developed for pairs of signals. This measure not only allows one to measure the strength but also the direction of the coupling. Our results for a system of coupled Lorenz dynamics show that we are able to consistently infer the underlying network for a subrange of the coupling strength and link density. Furthermore, we report that the addition of dynamical noise can benefit the reconstruction. Finally, we show an application to multichannel electroencephalographic recordings from an epilepsy patient.
引用
收藏
页数:10
相关论文
共 49 条
[1]   Characterizing unidirectional couplings between point processes and flows [J].
Andrzejak, R. G. ;
Kreuz, T. .
EPL, 2011, 96 (05)
[2]   Using bivariate signal analysis to characterize the epileptic focus: The benefit of surrogates [J].
Andrzejak, R. G. ;
Chicharro, D. ;
Lehnertz, K. ;
Mormann, F. .
PHYSICAL REVIEW E, 2011, 83 (04)
[3]   Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients [J].
Andrzejak, Ralph G. ;
Schindler, Kaspar ;
Rummel, Christian .
PHYSICAL REVIEW E, 2012, 86 (04)
[4]  
[Anonymous], 2007, NETWORKS INTRO
[5]  
[Anonymous], BMC NEUROSCI
[6]  
[Anonymous], PHILOS T R SOC A
[7]   A robust method for detecting interdependences: application to intracranially recorded EEG [J].
Arnhold, J ;
Grassberger, P ;
Lehnertz, K ;
Elger, CE .
PHYSICA D-NONLINEAR PHENOMENA, 1999, 134 (04) :419-430
[8]   A Bayesian approach for structure learning in oscillating regulatory networks [J].
Banos, Daniel Trejo ;
Millar, Andrew J. ;
Sanguinetti, Guido .
BIOINFORMATICS, 2015, 31 (22) :3617-3624
[9]   Successful network inference from time-series data using mutual information rate [J].
Bianco-Martinez, E. ;
Rubido, N. ;
Antonopoulos, Ch. G. ;
Baptista, M. S. .
CHAOS, 2016, 26 (04)
[10]   Degenerate time-dependent network dynamics anticipate seizures in human epileptic brain [J].
Campo, Adria Tauste ;
Principe, Alessandro ;
Ley, Miguel ;
Rocamora, Rodrigo ;
Deco, Gustavo .
PLOS BIOLOGY, 2018, 16 (04)