Global existence and boundedness in a Keller-Segel-(Navier-)Stokes system with signal-dependent sensitivity

被引:17
作者
Liu, Ji [1 ]
Wang, Yifu [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Beijing Key Lab MCAACI, Beijing 100081, Peoples R China
关键词
Keller-Segel; Navier-Stokes; Stokes; Boundedness; Global existence; PARABOLIC CHEMOTAXIS SYSTEM; BLOW-UP; STOKES SYSTEM; AGGREGATION; MODEL;
D O I
10.1016/j.jmaa.2016.10.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following Keller-Segel(-Navier)-Stokes system {n(t) + u . del n = Delta n - del . (n chi(c)del c), x is an element of Omega, t > 0, c(t) + u . del c = Delta c - c + n, x is an element of Omega, t > 0, u(t) + k(u .del)u = Delta u + del P + n del phi, x is an element of Omega, t > 0, (star) del . u = 0, x is an element of Omega, t > 0, where Omega subset of R-N (N = 2,3) is a bounded domain with smooth boundary partial derivative Omega, kappa is an element of R and chi(c) is assumed to generalize the prototype chi(c) = chi(0)/(1 + mu c)(2), c >= 0. It is proved that i) for is kappa not equal 0 and N = 2 or kappa = 0 and N is an element of {2, 3}, the corresponding initial boundary problem admits a unique global classical solution which is bounded; ii) for is kappa not equal 0 and N = 3, the corresponding initial boundary problem possesses at least one global weak solution. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:499 / 528
页数:30
相关论文
共 35 条
[21]   Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system [J].
Tao, Youshan ;
Winkler, Michael .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (05) :2555-2573
[22]   A chemotaxis system with logistic source [J].
Tello, J. Ignacio ;
Winkler, Michael .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (06) :849-877
[23]  
Teman R., 1977, STUD APPL MATH, V2
[24]   Bacterial swimming and oxygen transport near contact lines [J].
Tuval, I ;
Cisneros, L ;
Dombrowski, C ;
Wolgemuth, CW ;
Kessler, J ;
Goldstein, RE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (07) :2277-2282
[25]   Global existence and boundedness in a Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation [J].
Wang, Yulan ;
Xiang, Zhaoyin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (12) :7578-7609
[26]   Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system [J].
Winkler, Michael .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (05) :1329-1352
[27]   Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity [J].
Winkler, Michael .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (04) :3789-3828
[28]   Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system [J].
Winkler, Michael .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 100 (05) :748-767
[29]   Global Large-Data Solutions in a Chemotaxis-(Navier-)Stokes System Modeling Cellular Swimming in Fluid Drops [J].
Winkler, Michael .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (02) :319-351
[30]   Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity [J].
Winkler, Michael .
MATHEMATISCHE NACHRICHTEN, 2010, 283 (11) :1664-1673