Wearable Bioimpedance Hydration Monitoring System using Conformable AgNW Electrodes

被引:2
作者
Songkakul, Tanner [1 ]
Wu, Shuang [2 ]
Ahmmed, Parvez [1 ]
Reynolds, William D., Jr. [3 ]
Zhu, Yong [2 ]
Bozkurt, Alper [1 ]
机构
[1] North Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA
[2] North Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC USA
[3] Onda Vis Technol, Raleigh, NC USA
来源
2021 IEEE SENSORS | 2021年
基金
美国国家科学基金会;
关键词
bioimpedance spectroscopy; wearable; hydration; IMPEDANCE; DEHYDRATION; FREQUENCY;
D O I
10.1109/SENSORS47087.2021.9639469
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Monitoring hydration level could be vital for maintaining physiological and cognitive performance during physical exertion and thermal stress. We present a custom miniaturized wearable bioimpedance spectroscopy (BIS) system consisting of a Bluetooth-enabled system-on-a-chip and an analog front-end circuit integrated with conformable, flexible, and stretchable silver-nanowire electrodes. This system is capable of performing four-electrode BIS at a range of frequencies between 5 kHz and 195 kHz, transmitting the data wirelessly to a data aggregator, and configuring the front-end circuit parameters over-the-air when needed. A 150 mAh lithium polymer battery can power the system for 18 hours. In this study, proof-of-concept in-vitro validation of the system generated promising results.
引用
收藏
页数:4
相关论文
共 17 条
[1]  
Berardesca E, 1997, Skin Res Technol, V3, P126, DOI 10.1111/j.1600-0846.1997.tb00174.x
[2]   Dehydration: Physiology, Assessment, and Performance Effects [J].
Cheuvront, Samuel N. ;
Kenefick, Robert W. .
COMPREHENSIVE PHYSIOLOGY, 2014, 4 (01) :257-285
[3]   Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics [J].
Cui, Zheng ;
Han, Yiwei ;
Huang, Qijin ;
Dong, Jingyan ;
Zhu, Yong .
NANOSCALE, 2018, 10 (15) :6806-6811
[4]   Dehydration and cognitive performance [J].
Grandjean, Ann C. ;
Grandjean, Nicole R. .
JOURNAL OF THE AMERICAN COLLEGE OF NUTRITION, 2007, 26 (05) :549S-554S
[5]   Smart Multi-Frequency Bioelectrical Impedance Spectrometer for BIA and BIVA Applications [J].
Harder, Rene ;
Diedrich, Andre ;
Whitfield, Jonathan S. ;
Buchowski, Macie S. ;
Pietsch, John B. ;
Baudenbacher, Franz J. .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2016, 10 (04) :912-919
[6]   Epidermal Impedance Sensing Sheets for Precision Hydration Assessment and Spatial Mapping [J].
Huang, Xian ;
Cheng, Huanyu ;
Chen, Kaile ;
Zhang, Yilin ;
Zhang, Yihui ;
Liu, Yuhao ;
Zhu, Chenqi ;
Ouyang, Shao-chi ;
Kong, Gil-Woo ;
Yu, Cunjiang ;
Huang, Yonggang ;
Rogers, John A. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2013, 60 (10) :2848-2857
[7]   Epidermal Differential Impedance Sensor for Conformal Skin Hydration Monitoring [J].
Huang, Xian ;
Yeo, Woon-Hong ;
Liu, Yuhao ;
Rogers, John A. .
BIOINTERPHASES, 2012, 7 (1-4) :1-9
[8]  
Ibrahim Bassem., 2017, 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), P1, DOI 10.1109/BIOCAS.2017.8325138
[9]   Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process [J].
Korte, Kylee E. ;
Skrabalak, Sara E. ;
Xia, Younan .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (04) :437-441
[10]   A four-electrode low frequency impedance spectroscopy measurement system using the AD5933 measurement chip [J].
Margo, C. ;
Katrib, J. ;
Nadi, M. ;
Rouane, A. .
PHYSIOLOGICAL MEASUREMENT, 2013, 34 (04) :391-405