CLT FOR LINEAR RANDOM FIELDS WITH STATIONARY MARTINGALE-DIFFERENCE INNOVATION

被引:1
作者
Banys, Povilas [1 ]
机构
[1] Vilnius State Univ, Fac Math & Informat, LT-03225 Vilnius, Lithuania
关键词
central limit theorem; martingale differences; random linear fields; Beveridge-Nelson decomposition; lexicographical order; ASYMPTOTIC NORMALITY; DECOMPOSITION; THEOREM; SERIES;
D O I
10.1007/s10986-011-9127-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [V. Paulauskas, On Beveridge-Nelson decomposition and limit theorems for linear random fields, J. Multivariate Anal., 101: 621-639, 2010], limit theorems for linear random fields generated by independent identically distributed innovations were proved. In this paper, we present the central limit theorem for linear random fields with martingale-differences innovations satisfying the central limit theorem from [J. Dedecker, A central limit theorem for stationary random fields, Probab. Theory Relat. Fields, 110(3): 397-426, 1998] and arranged in lexicographical order.
引用
收藏
页码:303 / 309
页数:7
相关论文
共 16 条
[1]  
[Anonymous], 1969, Soviet Mathematics Doklady
[2]  
BANYS P, LITH MATH J IN PRESS
[3]   A NEW APPROACH TO DECOMPOSITION OF ECONOMIC TIME-SERIES INTO PERMANENT AND TRANSITORY COMPONENTS WITH PARTICULAR ATTENTION TO MEASUREMENT OF THE BUSINESS-CYCLE [J].
BEVERIDGE, S ;
NELSON, CR .
JOURNAL OF MONETARY ECONOMICS, 1981, 7 (02) :151-174
[4]  
DAVYDOV Y, 2011, BEVERIDGE NELSON DEC
[5]   A central limit theorem for stationary random fields [J].
Dedecker, J .
PROBABILITY THEORY AND RELATED FIELDS, 1998, 110 (03) :397-426
[6]   Asymptotic normality of kernel estimates in a regression model for random fields [J].
El Machkouri, Mohamed ;
Stoica, Radu .
JOURNAL OF NONPARAMETRIC STATISTICS, 2010, 22 (08) :955-971
[7]  
Gordin M.I., 2009, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), V364, P88
[8]  
JANZURA M, 1995, MATH METHODS STAT, V4, P463
[9]  
JENSEN JL, 1994, ANN I STAT MATH, V46, P475
[10]   Asymptotics for linear random fields [J].
Marinucci, D ;
Poghosyan, S .
STATISTICS & PROBABILITY LETTERS, 2001, 51 (02) :131-141