REGULARITY OF COMMUTATORS OF MULTILINEAR MAXIMAL OPERATORS WITH LIPSCHITZ SYMBOLS

被引:6
作者
Chen, Ting [1 ,2 ]
Liu, Feng [3 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2022年 / 25卷 / 01期
基金
中国国家自然科学基金;
关键词
Multilinear maximal operator; commutator; boundedness; Sobolev space; Triebel-Lizorkin space; Besov space; BOUNDEDNESS; CONTINUITY;
D O I
10.7153/mia-2022-25-08
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the regularity properties for commutators of multilinear fractional maximal operators. More precisely, let m >= 1, 0 <= alpha < mn and <(b)over right arrow> = (b(1),..., b(m)) with each b(i) belonging to the Lipschitz space Lip(R), we denote by [(b) over right arrow, M-alpha] (resp., M-alpha,M- (b) over right arrow) the commutator of the multilinear fractional maximal operator M-alpha with (b) over right arrow (resp., the multilinear fractional maximal commutators). When alpha = 0, we denote [(b) over right arrow, M-alpha] = [(b) over right arrow, M] and M-alpha,M- (b) over right arrow = M-(b) over right arrow. We show that for 0 < s < 1, 1 < p(1),..., p(m), p, q < infinity, 1/p = 1/p(1) + ... + 1/p(m), both [(b) over right arrow, M] and M-(b) over right arrow are bounded and continuous from W-s,W- p1 (R-n) x ... x(W s,pm) (R-n) to W-s,W-p(R-n), from F-s(p1,q) (R-n) x ... x F-s (pm,q) (R-n) to F-s(p,q) (R-n) and from B-s(p1,q) (R-n) x ... x B-s (pm,q) (R-n) to B-s(p,q) (R-n). It was also shown that for 0 <= alpha < mn, 1 < p(1),..., p(m), q < infinity and 1/q = 1/p(1) + ... + 1/p(m) - alpha/n, both [<(b)over right arrow>, M] and M-(b) over right arrow are bounded from W-1,W- p1 (R-n) x ... xW(1,pm)(R-n) to W-1,W-q(R-n).
引用
收藏
页码:109 / 134
页数:26
相关论文
共 29 条
[1]   Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities [J].
Aldaz, J. M. ;
Perez Lazaro, J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (05) :2443-2461
[2]  
[Anonymous], 1991, CBMS REGIONAL C SERI
[3]   On the variation of maximal operators of convolution type [J].
Cameiro, Emanuel ;
Svaiter, Benar F. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (05) :837-865
[4]   On the regularity of maximal operators [J].
Carneiro, Emanuel ;
Moreira, Diego .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (12) :4395-4404
[5]   Endpoint Sobolev and BV continuity for maximal operators [J].
Carneiro, Emanuel } ;
Madrid, Jose ;
Pierce, Lillian B. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (10) :3262-3294
[6]   DERIVATIVE BOUNDS FOR FRACTIONAL MAXIMAL FUNCTIONS [J].
Carneiro, Emanuel ;
Madrid, Jose .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (06) :4063-4092
[7]  
Gilbarg D., 2015, ELLIPTIC PARTIAL DIF, V224
[8]  
Grafakos L., 2003, CLASSICAL MODERN FOU
[9]  
Hajlasz P, 2004, ANN ACAD SCI FENN-M, V29, P167
[10]  
Hajlasz P, 2010, P AM MATH SOC, V138, P165