Fractional Choquard equation with critical nonlinearities

被引:75
|
作者
Mukherjee, T. [1 ]
Sreenadh, K. [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2017年 / 24卷 / 06期
关键词
Fractional Laplacian; Brezis-Nirenberg problem; Choquard equation; Critical exponent; BREZIS-NIRENBERG RESULT; EXISTENCE; GUIDE;
D O I
10.1007/s00030-017-0487-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the Brezis-Nirenberg type problem of nonlinear Choquard equation involving the fractional Laplacian (-Delta)(s) u = (integral(Omega) vertical bar u vertical bar(2)*(mu,s)/vertical bar x - y vertical bar(mu) dy) vertical bar u vertical bar(2)*(mu,s-2) u + lambda u in Omega, u = 0 in R-n\Omega, where Omega is a bounded domain in R-n with Lipschitz boundary, lambda is a real parameter, s is an element of (0, 1), n > 2s, 0 < mu < n and 2(mu,s)* = (2n - mu)/(n - 2s) is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality. We obtain some existence, nonexistence and regularity results for weak solution of the above problem using variational methods.
引用
收藏
页数:34
相关论文
共 50 条
  • [31] Fractional Kirchhoff-Choquard equation involving Schrodinger term and upper critical exponent
    Sang, Yanbin
    Liang, Sihua
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (01)
  • [32] Singular Doubly Nonlocal Elliptic Problems with Choquard Type Critical Growth Nonlinearities
    Giacomoni, Jacques
    Goel, Divya
    Sreenadh, K.
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (05) : 4492 - 4530
  • [33] On a fractional (p,q)-Laplacian equation with critical nonlinearities
    Shen, Yansheng
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024,
  • [34] A critical fractional equation with concave convex power nonlinearities
    Barrios, B.
    Colorado, E.
    Servadei, R.
    Soria, F.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (04): : 875 - 900
  • [35] Multiplicity and concentration behaviour of solutions for a fractional Choquard equation with critical growth
    Yang, Zhipeng
    Zhao, Fukun
    ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) : 732 - 774
  • [36] Small linear perturbations of fractional Choquard equations with critical exponent
    He, Xiaoming
    Radulescu, Vicentiu D.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 282 : 481 - 540
  • [37] Normalized Ground States for the Critical Fractional Choquard Equation with a Local Perturbation
    Xiaoming He
    Vicenţiu D. Rădulescu
    Wenming Zou
    The Journal of Geometric Analysis, 2022, 32
  • [38] Asymptotic behavior of ground states for a fractional Choquard equation with critical growth
    Yang, Xianyong
    Miao, Qing
    AIMS MATHEMATICS, 2021, 6 (04): : 3838 - 3856
  • [39] Choquard equations with critical exponential nonlinearities in the zero mass case
    Romani, Giulio
    AIMS MATHEMATICS, 2024, 9 (08): : 21538 - 21556
  • [40] Normalized solutions for the Choquard equations with critical nonlinearities
    Gao, Qian
    He, Xiaoming
    ADVANCES IN NONLINEAR ANALYSIS, 2024, 13 (01)