Universal and shape dependent features of surface superconductivitity

被引:6
作者
Correggi, Michele [1 ]
Devanarayanan, Bharathiganesh [2 ]
Rougerie, Nicolas [3 ,4 ]
机构
[1] Sapienza Univ Roma, Dipartimento Matemat, Ple Aldo Moro,5, I-00185 Rome, Italy
[2] Natl Inst Technol Rourkela, Dept Phys & Astron, Rourkela 769008, Odisha, India
[3] Univ Grenoble Alpes, BP 166, F-38042 Grenoble, France
[4] CNRS, LPMMC UMR 5493, F-38042 Grenoble, France
关键词
GINZBURG-LANDAU; MICROSCOPIC DERIVATION; MATLAB TOOLBOX; EQUATIONS; FIELD; ASYMPTOTICS; TRANSITION; GPELAB; ENERGY;
D O I
10.1140/epjb/e2017-80498-3
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We analyze the response of a type II superconducting wire to an external magnetic field parallel to it in the framework of Ginzburg-Landau theory. We focus on the surface superconductivity regime of applied field between the second and third critical values, where the superconducting state survives only close to the sample's boundary. Our first finding is that, in first approximation, the shape of the boundary plays no role in determining the density of superconducting electrons. A second order term is however isolated, directly proportional to the mean curvature of the boundary. This demonstrates that points of higher boundary curvature (counted inwards) attract superconducting electrons.
引用
收藏
页数:7
相关论文
共 46 条
[1]   THIN FILM LIMITS FOR GINZBURG-LANDAU WITH STRONG APPLIED MAGNETIC FIELDS [J].
Alama, Stan ;
Bronsard, Lia ;
Galvao-Sousa, Bernardo .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (01) :97-124
[2]   Nonlinear surface superconductivity in the large κ limit [J].
Almog, Y .
REVIEWS IN MATHEMATICAL PHYSICS, 2004, 16 (08) :961-976
[3]   The distribution of surface superconductivity along the boundary: On a conjecture of X. B. Pan [J].
Almog, Yaniv ;
Helffer, Bernard .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 38 (06) :1715-1732
[4]   GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations II: Dynamics and stochastic simulations [J].
Antoine, Xavier ;
Duboscq, Romain .
COMPUTER PHYSICS COMMUNICATIONS, 2015, 193 :95-117
[5]   GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations I: Computation of stationary solutions [J].
Antoine, Xavier ;
Duboscq, Romain .
COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (11) :2969-2991
[6]   Onset of superconductivity in decreasing fields for general domains [J].
Bernoff, A ;
Sternberg, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (03) :1272-1284
[7]   Superconductivity in domains with corners [J].
Bonnaillie-Noel, V. ;
Fournais, S. .
REVIEWS IN MATHEMATICAL PHYSICS, 2007, 19 (06) :607-637
[8]  
Bonnaillie-Noel V., NUMERICAL ESTIMATES
[9]   Asymptotics for the low-lying eigenstates of the Schrodinger operator with magnetic field near corners [J].
Bonnaillie-Noel, Virginie ;
Dauge, Monique .
ANNALES HENRI POINCARE, 2006, 7 (05) :899-931
[10]  
Casalbuoni S., 2005, METHODS PHYS RES A, V538, P45