Influence of pyrolysis temperature on characteristics and environmental risk of heavy metals in pyrolyzed biochar made from hydrothermally treated sewage sludge

被引:161
作者
Wang, Xingdong [1 ]
Chi, Qiaoqiao [1 ]
Liu, Xuejiao [1 ,2 ]
Wang, Yin [1 ]
机构
[1] Chinese Acad Sci, Inst Urban Environm, CAS Key Lab Urban Pollutant Convers, Xiamen 361021, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Sewage sludge biochar; Hydrothermal treatment; Pyrolysis; Heavy metals; Risk assessment; TRANSFORMATION BEHAVIOR; SEQUENTIAL EXTRACTION; AROMATIC CONTAMINANTS; WASTE-WATER; BIO-OIL; CARBONIZATION; LIQUEFACTION; MIGRATION; ADSORPTION; EFFICIENCY;
D O I
10.1016/j.chemosphere.2018.10.189
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A novel approach was used to prepare sewage sludge (SS)-derived biochar via coupling of hydrothermal pretreatment with pyrolysis (HTP) process at 300-700 degrees C. The influence of the pyrolysis temperature on the characteristics and environmental risk of heavy metals (HMs) in biochar derived from SS were investigated. The HTP process at higher pyrolysis temperature (>= 500 degrees C) resulting in a higher quality of SS-derived biochar and in HMs of lower toxicity and environmental risk, compared with direct SS pyrolysis. Surface characterization and micromorphology analysis indicate that the N-2 adsorption capacity and BET surface area in biochar (SRC220-500) obtained from hydrothermally treated SS at 220 degrees C (SR220) pyrolysis at 500 degrees C, significantly increased the BET surface area and achieved its maximum value (47.04 m(2)/g). Moreover, the HTP process can promote the HMs in SS be transformed from bioavailable fractions to more stable fractions. This increases with the pyrolysis temperature, resulting in a remarkable reduction in the potential environmental risk of HMs from the biochar obtained from the HTP process. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:698 / 706
页数:9
相关论文
共 49 条
[1]   Biochar production by sewage sludge pyrolysis [J].
Agrafioti, Evita ;
Bouras, George ;
Kalderis, Dimitrios ;
Diamadopoulos, Evan .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2013, 101 :72-78
[2]   Roles of water for chemical reactions in high-temperature water [J].
Akiya, N ;
Savage, PE .
CHEMICAL REVIEWS, 2002, 102 (08) :2725-2750
[3]   Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion [J].
Bougrier, Claire ;
Delgenes, Jean Philippe ;
Carrere, Helene .
CHEMICAL ENGINEERING JOURNAL, 2008, 139 (02) :236-244
[4]   The molar H:Corg ratio of biochar is a key factor in mitigating N2O emissions from soil [J].
Cayuela, M. L. ;
Jeffery, S. ;
van Zwieten, L. .
AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2015, 202 :135-138
[5]   Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures [J].
Chen, Baoliang ;
Zhou, Dandan ;
Zhu, Lizhong .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (14) :5137-5143
[6]   Utilization of urban sewage sludge: Chinese perspectives [J].
Chen, H. ;
Yan, S-H. ;
Ye, Z-L. ;
Meng, H-J. ;
Zhu, Y-G. .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2012, 19 (05) :1454-1463
[7]   Total concentrations and speciation of heavy metals in municipal sludge from Changsha, Zhuzhou and Xiangtan in middle-south region of China [J].
Chen, Ming ;
Li, Xiao-ming ;
Yang, Qi ;
Zeng, Guang-ming ;
Zhang, Ying ;
Liao, De-xiang ;
Liu, Jing-jin ;
Hu, Jing-mei ;
Guo, Liang .
JOURNAL OF HAZARDOUS MATERIALS, 2008, 160 (2-3) :324-329
[8]   Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge [J].
Chen Tan ;
Zhang Yaxin ;
Wang Hongtao ;
Lu Wenjing ;
Zhou Zeyu ;
Zhang Yuancheng ;
Ren Lulu .
BIORESOURCE TECHNOLOGY, 2014, 164 :47-54
[9]   Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals [J].
Devi, Parmila ;
Saroha, Anil K. .
BIORESOURCE TECHNOLOGY, 2014, 162 :308-315
[10]   Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering [J].
Funke, Axel ;
Ziegler, Felix .
BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2010, 4 (02) :160-177