THE RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL IN BOCHNER-LEBESGUE SPACES I

被引:3
作者
Neto, Paulo mendes de carvalho [1 ]
Fehlberg Junior, Renato [2 ]
机构
[1] Univ Fed Santa Catarina, Dept Math, R Eng Agron Andrei Cristian Ferreira, Florianopolis, SC, Brazil
[2] Univ Espirito Santo, Dept Math, Ave Fernando Ferrari 514, Vitoria, ES, Brazil
关键词
Riemann-Liouville fractional integral; Bochner-Lebesgue space; operator theory; semigroup theory; WELL-POSEDNESS; EQUATIONS; TIME;
D O I
10.3934/cpaa.2022118
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the Riemann-Liouville fractional integral of order alpha > 0 as a linear operator from L-p(I, X) into itself, when 1 <= p <= infinity, I = [t(0), t(1)] (or I = [t(0), infinity)) and X is a Banach space. In particular, when I = [t(0), t(1)], we obtain necessary and sufficient conditions to ensure its compactness. We also prove that Riemann-Liouville fractional integral defines a C-0-semigroup but does not defines a uniformly continuous semigroup. We close this study by presenting lower and higher bounds to the norm of this operator.
引用
收藏
页码:3667 / 3700
页数:34
相关论文
共 35 条
[1]  
Abramowitz M., 1964, Handbook of mathematical functions with formulas, graphs, and mathematical tables, V9th, DOI DOI 10.2307/2282672
[2]   A Parabolic Problem with a Fractional Time Derivative [J].
Allen, Mark ;
Caffarelli, Luis ;
Vasseur, Alexis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 221 (02) :603-630
[3]  
[Anonymous], 1948, Functional analysis and semi-groups
[4]  
[Anonymous], 1972, Realizability theory for continuous linear systems
[5]  
[Anonymous], 2013, Monotone operators in Banach space and nonlinear partial differential equations
[6]  
[Anonymous], 1977, American Mathematical Soc.
[7]  
Arendt W, 2011, MG MATH, V96, pIX, DOI 10.1007/978-3-0348-0087-7
[8]  
Brezis H, 2011, UNIVERSITEXT, P1
[9]   NONLINEAR STOCHASTIC TIME-FRACTIONAL DIFFUSION EQUATIONS ON R: MOMENTS, HOLDER REGULARITY AND INTERMITTENCY [J].
Chen, Le .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (12) :8497-8535
[10]   On the fractional version of Leibniz rule [J].
de Carvalho Neto, Paulo M. ;
Fehlberg Junior, Renato .
MATHEMATISCHE NACHRICHTEN, 2020, 293 (04) :670-700