Mapping Gaps in Sugarcane by UAV RGB Imagery: The Lower and Earlier the Flight, the More Accurate

被引:14
作者
Barbosa Junior, Marcelo Rodrigues [1 ]
Tedesco, Danilo [1 ]
Correa, Rafael de Graaf [1 ]
Moreira, Bruno Rafael de Almeida [1 ]
da Silva, Rouverson Pereira [1 ]
Zerbato, Cristiano [1 ]
机构
[1] Sao Paulo State Univ Unesp, Sch Vet & Agr Sci, Dept Engn & Math Sci, BR-14884900 Jaboticabal, SP, Brazil
来源
AGRONOMY-BASEL | 2021年 / 11卷 / 12期
关键词
pixel size; remote sensing; plant height; unmanned aerial vehicle; Saccharum spp; FRACTIONAL VEGETATION COVER; IDENTIFICATION; ROWS;
D O I
10.3390/agronomy11122578
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Imagery data prove useful for mapping gaps in sugarcane. However, if the quality of data is poor or the moment of flying an aerial platform is not compatible to phenology, prediction becomes rather inaccurate. Therefore, we analyzed how the combination of pixel size (3.5, 6.0 and 8.2 cm) and height of plant (0.5, 0.9, 1.0, 1.2 and 1.7 m) could impact the mapping of gaps on unmanned aerial vehicle (UAV) RGB imagery. Both factors significantly influenced mapping. The larger the pixel or plant, the less accurate the prediction. Error was more likely to occur for regions on the field where actively growing vegetation overlapped at gaps of 0.5 m. Hence, even 3.5 cm pixel did not capture them. Overall, pixels of 3.5 cm and plants of 0.5 m outstripped other combinations, making it the most accurate (absolute error ~0.015 m) solution for remote mapping on the field. Our insights are timely and provide forward knowledge that is particularly relevant to progress in the field's prominence of flying a UAV to map gaps. They will enable producers to make decisions on replanting and fertilizing site-specific high-resolution imagery data.
引用
收藏
页数:10
相关论文
共 30 条
[1]   Koppen's climate classification map for Brazil [J].
Alvares, Clayton Alcarde ;
Stape, Jose Luiz ;
Sentelhas, Paulo Cesar ;
de Moraes Goncalves, Jose Leonardo ;
Sparovek, Gerd .
METEOROLOGISCHE ZEITSCHRIFT, 2013, 22 (06) :711-728
[2]   Unmanned Aerial Vehicle-Based Multispectral Remote Sensing for Commercially Important Aromatic Crops in India for Its Efficient Monitoring and Management [J].
Bahuguna, Sonam ;
Anchal, Shubham ;
Guleria, Deepak ;
Devi, Mamta ;
Meenakshi ;
Kumar, Devshree ;
Kumar, Rakesh ;
Murthy, P. V. S. ;
Kumar, Amit .
JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2022, 50 (02) :397-407
[3]   Forecasting Yield and Lignocellulosic Composition of Energy Cane Using Unmanned Aerial Systems [J].
Cholula, Uriel ;
da Silva, Jorge A. ;
Marconi, Thiago ;
Thomasson, J. Alex ;
Solorzano, Jorge ;
Enciso, Juan .
AGRONOMY-BASEL, 2020, 10 (05)
[4]   UAV applications in Agriculture 4.0 [J].
do Amaral, Lucas Rios ;
Zerbato, Cristiano ;
de Freitas, Rodrigo Greggio ;
Barbosa Junior, Marcelo Rodrigues ;
Pires da Silva Simoes, Isabela Ordine .
REVISTA CIENCIA AGRONOMICA, 2020, 51 :1-15
[5]   Actual Evapotranspiration and Biomass of Maize from a Red-Green-Near-Infrared (RGNIR) Sensor on Board an Unmanned Aerial Vehicle (UAV) [J].
dos Santos, Robson Argolo ;
Mantovani, Everardo Chartuni ;
Filgueiras, Roberto ;
Fernandes-Filho, Elpidio Inacio ;
Barbosa da Silva, Adelaide Cristielle ;
Venancio, Luan Peroni .
WATER, 2020, 12 (09)
[6]   Alfalfa Yield Prediction Using UAV-Based Hyperspectral Imagery and Ensemble Learning [J].
Feng, Luwei ;
Zhang, Zhou ;
Ma, Yuchi ;
Du, Qingyun ;
Williams, Parker ;
Drewry, Jessica ;
Luck, Brian .
REMOTE SENSING, 2020, 12 (12)
[7]   Grain Yield Estimation in Rice Breeding Using Phenological Data and Vegetation Indices Derived from UAV Images [J].
Ge, Haixiao ;
Ma, Fei ;
Li, Zhenwang ;
Du, Changwen .
AGRONOMY-BASEL, 2021, 11 (12)
[8]   Aerial Imagery Analysis - Quantifying Appearance and Number of Sorghum Heads for Applications in Breeding and Agronomy [J].
Guo, Wei ;
Zheng, Bangyou ;
Potgieter, Andries B. ;
Diot, Julien ;
Watanabe, Kakeru ;
Noshita, Koji ;
Jordan, David R. ;
Wang, Xuemin ;
Watson, James ;
Ninomiya, Seishi ;
Chapman, Scott C. .
FRONTIERS IN PLANT SCIENCE, 2018, 9
[9]   Pixel size of aerial imagery constrains the applications of unmanned aerial vehicle in crop breeding [J].
Hu, Pengcheng ;
Guo, Wei ;
Chapman, Scott C. ;
Guo, Yan ;
Zheng, Bangyou .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 154 :1-9
[10]   Unmanned aerial vehicles for biodiversity-friendly agricultural landscapes-A systematic review [J].
Libran-Embid, Felipe ;
Klaus, Felix ;
Tscharntke, Teja ;
Grass, Ingo .
SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 732