A latent allocation model for the analysis of microbial composition and disease

被引:6
作者
Abe, Ko [1 ]
Hirayama, Masaaki [2 ]
Ohno, Kinji [3 ]
Shimamura, Teppei [4 ]
机构
[1] Nagoya Univ, Grad Sch Med, Div Syst Biol, Showa Ku, 65 Tsurumai Cho, Nagoya, Aichi 4668550, Japan
[2] Nagoya Univ, Grad Sch Med, Sch Hlth Sci, Higashi Ku, 1-1-20 Daiko Minami, Nagoya, Aichi 618873, Japan
[3] Nagoya Univ, Grad Sch Med, Ctr Neurol Dis & Canc, Div Neurogenet,Showa Ku, 65 Tsurumai Cho, Nagoya, Aichi 4668550, Japan
[4] Nagoya Univ, Grad Sch Med, Div Syst Biol, Showa Ku, 65 Tsurumai Cho, Nagoya, Aichi 4668550, Japan
来源
BMC BIOINFORMATICS | 2018年 / 19卷
关键词
Latent allocation model; Mixture distribution; Metagenomics; PARKINSONS-DISEASE; GUT MICROBIOTA;
D O I
10.1186/s12859-018-2530-6
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundEstablishing the relationship between microbiota and specific diseases is important but requires appropriate statistical methodology. A specialized feature of microbiome count data is the presence of a large number of zeros, which makes it difficult to analyze in case-control studies. Most existing approaches either add a small number called a pseudo-count or use probability models such as the multinomial and Dirichlet-multinomial distributions to explain the excess zero counts, which may produce unnecessary biases and impose a correlation structure taht is unsuitable for microbiome data.ResultsThe purpose of this article is to develop a new probabilistic model, called BERnoulli and MUltinomial Distribution-based latent Allocation (BERMUDA), to address these problems. BERMUDA enables us to describe the differences in bacteria composition and a certain disease among samples. We also provide a simple and efficient learning procedure for the proposed model using an annealing EM algorithm.ConclusionWe illustrate the performance of the proposed method both through both the simulation and real data analysis. BERMUDA is implemented with R and is available from GitHub (https://github.com/abikoushi/Bermuda).
引用
收藏
页数:7
相关论文
共 14 条
[1]   A two-part mixed-effects model for analyzing longitudinal microbiome compositional data [J].
Chen, Eric Z. ;
Li, Hongzhe .
BIOINFORMATICS, 2016, 32 (17) :2611-2617
[2]   The Nasal and Gut Microbiome in Parkinson's Disease and Idiopathic Rapid Eye Movement Sleep Behavior Disorder [J].
Heintz-Buschart, Anna ;
Pandey, Urvashi ;
Wicke, Tamara ;
Sixel-Doering, Friederike ;
Janzen, Annette ;
Sittig-Wiegand, Elisabeth ;
Trenkwalder, Claudia ;
Oertel, Wolfgang H. ;
Mollenhauer, Brit ;
Wilmes, Paul .
MOVEMENT DISORDERS, 2018, 33 (01) :88-98
[3]   Parkinson's Disease and Parkinson's Disease Medications Have Distinct Signatures of the Gut Microbiome [J].
Hill-Burns, Erin M. ;
Debelius, Justine W. ;
Morton, James T. ;
Wissemann, William T. ;
Lewis, Matthew R. ;
Wallen, Zachary D. ;
Peddada, Shyamal D. ;
Factor, Stewart A. ;
Molho, Eric ;
Zabetian, Cyrus P. ;
Knight, Rob ;
Payami, Haydeh .
MOVEMENT DISORDERS, 2017, 32 (05) :739-749
[4]   Gut microbiota in Parkinson disease in a northern German cohort [J].
Hopfner, Franziska ;
Kuenstner, Axel ;
Mueller, Stefanie H. ;
Kuenzel, Sven ;
Zeuner, Kirsten E. ;
Margraf, Nils G. ;
Deuschl, Giinther ;
Baines, John F. ;
Kuhlenbaeumer, Gregor .
BRAIN RESEARCH, 2017, 1667 :41-45
[5]  
Paulson JN, 2013, NAT METHODS, V10, P1200, DOI [10.1038/NMETH.2658, 10.1038/nmeth.2658]
[6]   Analysis of Gut Microbiota in Patients with Parkinson's Disease [J].
Petrov, V. A. ;
Saltykova, I. V. ;
Zhukova, I. A. ;
Alifirova, V. M. ;
Zhukova, N. G. ;
Dorofeeva, Yu. B. ;
Tyakht, A. V. ;
Kovarsky, B. A. ;
Alekseev, D. G. ;
Kostryukova, E. S. ;
Mironova, Yu. S. ;
Izhboldina, O. P. ;
Nikitina, M. A. ;
Perevozchikova, T. V. ;
Fait, E. A. ;
Babenko, V. V. ;
Vakhitova, M. T. ;
Govorun, V. M. ;
Sazonov, A. E. .
BULLETIN OF EXPERIMENTAL BIOLOGY AND MEDICINE, 2017, 162 (06) :734-737
[7]   Gut Microbiota Are Related to Parkinson's Disease and Clinical Phenotype [J].
Scheperjans, Filip ;
Aho, Velma ;
Pereira, Pedro A. B. ;
Koskinen, Kaisa ;
Paulin, Lars ;
Pekkonen, Eero ;
Haapaniemi, Elena ;
Kaakkola, Seppo ;
Eerola-Rautio, Johanna ;
Pohja, Marjatta ;
Kinnunen, Esko ;
Murros, Kari ;
Auvinen, Petri .
MOVEMENT DISORDERS, 2015, 30 (03) :350-358
[8]   Deterministic annealing EM algorithm [J].
Ueda, N ;
Nakano, R .
NEURAL NETWORKS, 1998, 11 (02) :271-282
[9]   Application of Two-Part Statistics for Comparison of Sequence Variant Counts [J].
Wagner, Brandie D. ;
Robertson, Charles E. ;
Harris, J. Kirk .
PLOS ONE, 2011, 6 (05)
[10]   Normalization and microbial differential abundance strategies depend upon data characteristics [J].
Weiss, Sophie ;
Xu, Zhenjiang Zech ;
Peddada, Shyamal ;
Amir, Amnon ;
Bittinger, Kyle ;
Gonzalez, Antonio ;
Lozupone, Catherine ;
Zaneveld, Jesse R. ;
Vazquez-Baeza, Yoshiki ;
Birmingham, Amanda ;
Hyde, Embriette R. ;
Knight, Rob .
MICROBIOME, 2017, 5