Covariate selection for association screening in multiphenotype genetic studies

被引:19
作者
Aschard, Hugues [1 ,2 ,3 ]
Guillemot, Vincent [1 ]
Vilhjalmsson, Bjarni [4 ]
Patel, Chirag J. [5 ]
Skurnik, David [6 ,7 ,8 ,9 ]
Ye, Chun J. [10 ]
Wolpin, Brian [11 ]
Kraft, Peter [2 ,3 ,12 ]
Zaitlen, Noah [13 ]
机构
[1] Inst Pasteur, C3BI, Paris, France
[2] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
[3] Harvard TH Chan Sch Publ Hlth, Program Genet Epidemiol & Stat Genet, Boston, MA 02115 USA
[4] Aarhus Univ, Bioinformat Res Ctr, Aarhus, Denmark
[5] Harvard Med Sch, Dept Biomed Informat, Boston, MA USA
[6] Harvard Med Sch, Brigham & Womens Hosp, Div Infect Dis, Dept Med, Boston, MA USA
[7] Massachusetts Technol & Analyt, Brookline, MA USA
[8] Univ Paris 05, Necker Hosp, Dept Microbiol, Paris, France
[9] INSERM, U1151, Equipe 11, Inst Necker Enfants Malad, Paris, France
[10] Inst Human Genet, Dept Epidemiol & Biostat, San Francisco, CA USA
[11] Harvard Med Sch, Dana Farber Canc Inst, Ctr Gastrointestinal Oncol, Boston, MA USA
[12] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
[13] Univ Calif San Francisco, Dept Med0, San Francisco, CA USA
关键词
GENOME-WIDE ASSOCIATION; QUANTITATIVE TRAIT LOCI; EXPRESSION; PHENOTYPES; PROFILES; ATLAS; POWER;
D O I
10.1038/ng.3975
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Testing for associations in big data faces the problem of multiple comparisons, wherein true signals are difficult to detect on the background of all associations queried. This difficulty is particularly salient in human genetic association studies, in which phenotypic variation is often driven by numerous variants of small effect. The current strategy to improve power to identify these weak associations consists of applying standard marginal statistical approaches and increasing study sample sizes. Although successful, this approach does not leverage the environmental and genetic factors shared among the multiple phenotypes collected in contemporary cohorts. Here we developed covariates for multiphenotype studies (CMS), an approach that improves power when correlated phenotypes are measured on the same samples. Our analyses of real and simulated data provide direct evidence that correlated phenotypes can be used to achieve increases in power to levels often surpassing the power gained by a twofold increase in sample size.
引用
收藏
页码:1789 / +
页数:12
相关论文
共 36 条
  • [1] Adjusting for Heritable Covariates Can Bias Effect Estimates in Genome-Wide Association Studies
    Aschard, Hugues
    Vilhjalmsson, Bjarni J.
    Joshi, Amit D.
    Price, Alkes L.
    Kraft, Peter
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2015, 96 (02) : 329 - 339
  • [2] Maximizing the Power of Principal-Component Analysis of Correlated Phenotypes in Genome-wide Association Studies
    Aschard, Hugues
    Vilhjalmsson, Bjarni J.
    Greliche, Nicolas
    Morange, Pierre-Emmanuel
    Tregouet, David-Alexandre
    Kraft, Peter
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2014, 94 (05) : 662 - 676
  • [3] An atlas of genetic correlations across human diseases and traits
    Bulik-Sullivan, Brendan
    Finucane, Hilary K.
    Anttila, Verneri
    Gusev, Alexander
    Day, Felix R.
    Loh, Po-Ru
    Duncan, Laramie
    Perry, John R. B.
    Patterson, Nick
    Robinson, Elise B.
    Daly, Mark J.
    Price, Alkes L.
    Neale, Benjamin M.
    [J]. NATURE GENETICS, 2015, 47 (11) : 1236 - +
  • [4] Dahl A., 2017, PREPRINT
  • [5] A multiple-phenotype imputation method for genetic studies
    Dahl, Andrew
    Iotchkova, Valentina
    Baud, Amelie
    Johansson, Asa
    Gyllensten, Ulf
    Soranzo, Nicole
    Mott, Richard
    Kranis, Andreas
    Marchini, Jonathan
    [J]. NATURE GENETICS, 2016, 48 (04) : 466 - +
  • [6] Genomic control, a new approach to genetic-based association studies
    Devlin, B
    Roeder, K
    Wasserman, L
    [J]. THEORETICAL POPULATION BIOLOGY, 2001, 60 (03) : 155 - 166
  • [7] MULTICOLLINEARITY IN REGRESSION ANALYSIS - PROBLEM REVISITED
    FARRAR, DE
    GLAUBER, RR
    [J]. REVIEW OF ECONOMICS AND STATISTICS, 1967, 49 (01) : 92 - 107
  • [8] Rare and common variants: twenty arguments
    Gibson, Greg
    [J]. NATURE REVIEWS GENETICS, 2012, 13 (02) : 135 - 145
  • [9] Causal diagrams for epidemiologic research
    Greenland, S
    Pearl, J
    Robins, JM
    [J]. EPIDEMIOLOGY, 1999, 10 (01) : 37 - 48
  • [10] Causal knowledge as a prerequisite for confounding evaluation:: An application to birth defects epidemiology
    Hernán, MA
    Hernández-Díaz, S
    Werler, MM
    Mitchell, AA
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2002, 155 (02) : 176 - 184