Ultrasonic chaining of emulsion droplets

被引:11
作者
Abdelaziz, Mohammed A. [1 ,2 ]
Diaz, Jairo A. A. [1 ,2 ,3 ,5 ]
Aider, Jean-Luc [4 ]
Pine, David J. [1 ,2 ,3 ]
Grier, David G. [1 ,2 ]
Hoyos, Mauricio [4 ]
机构
[1] NYU, Dept Phys, New York, NY 10003 USA
[2] NYU, Ctr Soft Matter Res, New York, NY 10003 USA
[3] NYU, Dept Chem & Bimol Engn, New York, NY 11201 USA
[4] Sorbonne Univ, Lab PMMH Phys & Mecan Milieux Heterogenes, UMR7636 CNRS, ESPCI Paris,Paris Sci Lettres, 1 Rue Jussieu, F-75005 Paris, France
[5] Rochester Inst Technol, Dept Chem Engn, Rochester, NY 14623 USA
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 04期
基金
美国国家科学基金会;
关键词
PARTICLE; ROTATION; SPHERES; TORQUE; FORCE;
D O I
10.1103/PhysRevResearch.3.043157
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Emulsion droplets trapped in an ultrasonic levitator organize themselves in a way that solid spheres do not. Rather than coalescing into planar colloidal crystals, monodisperse emulsion droplets instead form single-file chains. These chains' collective behavior and their influence on nearby droplets suggest that their constituent droplets are spinning rapidly around their common axis. Such acoustically induced spinning also distinguishes fluid droplets from solid spheres and naturally accounts for the droplets' propensity to form chains. In this interpretation, solid spheres do not form chains because they do not spin. We demonstrate the chain-to-crystal transition with a model system in which fluid emulsion droplets can be photopolymerized into solid spheres without significantly changing other material properties. The behavior of this experimental system is quantitatively consistent with an acoustohydrodynamic model for spinning spheres in an acoustic levitator. This study therefore introduces acoustically driven spinning as a mechanism for guiding self-organization of acoustically levitated matter.
引用
收藏
页数:9
相关论文
共 31 条
[1]   Acoustokinetics: Crafting force landscapes from sound waves [J].
Abdelaziz, Mohammed A. ;
Grier, David G. .
PHYSICAL REVIEW RESEARCH, 2020, 2 (01)
[2]   Scale-free, programmable design of morphable chain loops of kilobots and colloidal motors [J].
Agrawal, Mayank ;
Glotzer, Sharon C. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (16) :8700-8710
[3]   Kilohertz Rotation of Nanorods Propelled by Ultrasound, Traced by Microvortex Advection of Nanoparticles [J].
Balk, Andrew L. ;
Mair, Lamar O. ;
Mathai, Pramod P. ;
Patrone, Paul N. ;
Wang, Wei ;
Ahmed, Suzanne ;
Mallouk, Thomas E. ;
Liddle, J. Alexander ;
Stavis, Samuel M. .
ACS NANO, 2014, 8 (08) :8300-8309
[4]   Acoustic physics - Suspended by sound [J].
Brandt, EH .
NATURE, 2001, 413 (6855) :474-475
[5]   Acoustically trapped colloidal crystals that are reconfigurable in real time [J].
Caleap, Mihai ;
Drinkwater, Bruce W. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (17) :6226-6230
[6]   Determination of the Secondary Bjerknes Force in Acoustic Resonators on Ground and in Microgravity Conditions [J].
Castro, Luz Angelica ;
Hoyos, Mauricio .
MICROGRAVITY SCIENCE AND TECHNOLOGY, 2016, 28 (01) :11-18
[7]   Parametric resonance of optically trapped aerosols [J].
Di Leonardo, R. ;
Ruocco, G. ;
Leach, J. ;
Padgett, M. J. ;
Wright, A. J. ;
Girkin, J. M. ;
Burnham, D. R. ;
McGloin, D. .
PHYSICAL REVIEW LETTERS, 2007, 99 (01)
[8]   Acoustic energy measurement for a standing acoustic wave in a micro-channel [J].
Dron, O. ;
Aider, J. -L. .
EPL, 2012, 97 (04)
[9]   Acoustic Manipulation of Dense Nanorods in Microgravity [J].
Dumy, Gabriel ;
Jeger-Madiot, Nathan ;
Benoit-Gonin, Xavier ;
Mallouk, Thomas E. ;
Hoyos, Mauricio ;
Aider, Jean-Luc .
MICROGRAVITY SCIENCE AND TECHNOLOGY, 2020, 32 (06) :1159-1174
[10]  
Frenkel D., 1996, Understanding molecular dynamics simulation from algorithms to applications