Template-directed Prussian blue nanocubes supported on Ni foam as the binder-free anode of lithium-ion batteries

被引:19
作者
Wang, Qiang [1 ]
Wu, Xinyuan [1 ]
You, Hairui [1 ]
Min, Huihua [2 ]
Xu, Xiaokang [1 ]
Hao, Junwei [1 ]
Liu, Xiaomin [1 ]
Yang, Hui [1 ]
机构
[1] Nanjing Tech Univ, Coll Mat Sci & Engn, Nanjing 210009, Peoples R China
[2] Nanjing Forestry Univ, Electron Microscope Lab, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
Prussian blue analogues; Template-directed; Binder-free electrode; Anode; Lithium storage; NICKEL-HYDROXIDE; ENERGY-STORAGE; PERFORMANCE; ELECTRODE; NANOSHEETS; ANALOGS; FRAMEWORK;
D O I
10.1016/j.apsusc.2021.151194
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The template-directed Prussian blue analogues supported on nickel foam (denoted as Td-PB/NF) is synthesized through the two-step hydrothermal method. The active materials of 100 nm KNiFe(CN)6 nanocubes form unique morphology by deposition on leaf-like Ni(OH)2 nanosheets. Td-PB/NF shows high mass and area specific capacity, excellent rate performance and long cycle life, when used as the anode material for lithium-ion batteries. More specifically, at the current density of 0.1 mA cm-2, the stable specific capacity can reach 2.1 mA h cm-2, which is comparable to that of the commercial graphite anode. Even at a current density of 2000 mA g-1, the capacity can still reach 375 mA h g-1 after 1000 cycles. The reaction mechanism of nickel-based Prussian blue as the lithium battery anode electrode is revealed through the characterization of electrode materials in different charge and discharge states. This template-assisted synthesis strategy may provide new ideas for the construction of high-performance lithium-ion batteries and other secondary batteries for Prussian blue-based anode materials.
引用
收藏
页数:10
相关论文
共 53 条
[1]   Exceptional Water Desalination Performance with Anion-Selective Electrodes [J].
Arulrajan, Antony C. ;
Ramasamy, Deepika L. ;
Sillanpaa, Mika ;
van der Wal, Albert ;
Biesheuvel, P. Maarten ;
Porada, Slawomir ;
Dykstra, Jouke E. .
ADVANCED MATERIALS, 2019, 31 (10)
[2]   Pseudocapacitive oxide materials for high-rate electrochemical energy storage [J].
Augustyn, Veronica ;
Simon, Patrice ;
Dunn, Bruce .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1597-1614
[3]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/nmat3601, 10.1038/NMAT3601]
[4]   Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity [J].
Boesenberg, Ulrike ;
Marcus, Matthew A. ;
Shukla, Alpesh K. ;
Yi, Tanghong ;
McDermott, Eamon ;
Teh, Pei Fen ;
Srinivasan, Madhavi ;
Moewes, Alexander ;
Cabana, Jordi .
SCIENTIFIC REPORTS, 2014, 4
[5]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[6]   Template-Directed Growth of Bimetallic Prussian Blue-Analogue Nanosheet Arrays and Their Derived Porous Metal Oxides for Oxygen Evolution Reaction [J].
Cao, Li-Ming ;
Hu, Yu-Wen ;
Zhong, Di-Chang ;
Lu, Tong-Bu .
CHEMSUSCHEM, 2018, 11 (21) :3708-3713
[7]   MnS nanoparticles embedded in N,S co-doped carbon nanosheets for superior lithium ion storage [J].
Chen, Jiangnan ;
Cong, Jianwei ;
Chen, Yao ;
Wang, Qiang ;
Shi, Mingchen ;
Liu, Xiaomin ;
Yang, Hui .
APPLIED SURFACE SCIENCE, 2020, 508
[8]   Superior Li-ion storage performance of graphene decorated NiO nanowalls on Ni as anode for lithium ion batteries [J].
Chen, Xuelin ;
Xiao, Ting ;
Wang, Shulin ;
Li, Jin ;
Xiang, Peng ;
Jiang, Lihua ;
Tan, Xinyu .
MATERIALS CHEMISTRY AND PHYSICS, 2019, 222 :31-36
[9]   The nature of Prussian Blue [J].
Davidson, D ;
Welo, LA .
JOURNAL OF PHYSICAL CHEMISTRY, 1928, 32 :1191-1196
[10]   SOLUTIONS OF LITHIUM-SALTS IN LIQUID LITHIUM - PREPARATION AND X-RAY CRYSTAL-STRUCTURE OF DILITHIUM SALT OF CARBODI-IMIDE (CYANAMIDE) [J].
DOWN, MG ;
HALEY, MJ ;
HUBBERSTEY, P ;
PULHAM, RJ ;
THUNDER, AE .
JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS, 1978, (10) :1407-1411