A Fast Low-Current Model for Impedance of a PEM Fuel Cell Cathode at Low Air Stoichiometry

被引:0
作者
Kulikovsky, Andrei [1 ,2 ]
机构
[1] Forschungszentrum Julich, Inst Energy & Climate Res, IEK Electrochem Proc Engn 3, D-52425 Julich, Germany
[2] Lomonosov Moscow State Univ, Res Comp Ctr, Moscow 119991, Russia
关键词
GAS-DIFFUSION ELECTRODES; ELECTROCHEMICAL IMPEDANCE; CATALYST LAYER; MASS-TRANSPORT; OSCILLATIONS; FLOW; SPECTROSCOPY; PARAMETERS; CHANNELS;
D O I
10.1149/2.0561709jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We report a physics-based analytical model for low-current PEM fuel cell impedance, which takes into account oxygen transport in the channel. The model is fast: fitting the model impedance to the experimental Nyquist spectrum takes about 2 minutes on a 2-GHz notebook. In addition to the transport and kinetic parameters of the catalyst layer, fitting returns the oxygen diffusion coefficient in the gas-diffusion layer and the resistivity due to oxygen transport in the channel. Maple worksheet with the fitting procedure is available for download. (C) The Author(s) 2017. Published by ECS.
引用
收藏
页码:F911 / F915
页数:5
相关论文
共 33 条
[1]   Two-dimensional modeling of a polymer electrolyte membrane fuel cell with long flow channel. Part II. Physics-based electrochemical impedance analysis [J].
Bao, Cheng ;
Bessler, Wolfgang G. .
JOURNAL OF POWER SOURCES, 2015, 278 :675-682
[2]   Investigation of mass transport in gas diffusion layer at the air cathode of a PEMFC [J].
Bultel, Y ;
Wiezell, K ;
Jaouen, F ;
Ozil, P ;
Lindbergh, G .
ELECTROCHIMICA ACTA, 2005, 51 (03) :474-488
[3]   Modeling impedance diagrams of active layers in gas diffusion electrodes: diffusion, ohmic drop effects and multistep reactions [J].
Bultel, Y ;
Genies, L ;
Antoine, O ;
Ozil, P ;
Durand, R .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2002, 527 (1-2) :143-155
[4]   In operando measurements of liquid water saturation distributions and effective diffusivities of polymer electrolyte membrane fuel cell gas diffusion layers [J].
Chevalier, S. ;
Lee, J. ;
Ge, N. ;
Yip, R. ;
Antonacci, P. ;
Tabuchi, Y. ;
Kotaka, T. ;
Bazylak, A. .
ELECTROCHIMICA ACTA, 2016, 210 :792-803
[5]   Investigation of Proton Transport in the Catalyst Layer of PEM Fuel Cells by Electrochemical Impedance Spectroscopy [J].
Cimenti, M. ;
Bessarabov, D. ;
Tam, M. ;
Stumper, J. .
ELECTRODE PROCESSES RELEVANT TO FUEL CELL TECHNOLOGY, 2010, 28 (23) :147-157
[6]   Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells [J].
Eikerling, M ;
Kornyshev, AA .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1999, 475 (02) :107-123
[7]   A multi-scale dynamic mechanistic model for the transient analysis of PEFCs [J].
Franco, A. A. ;
Schott, P. ;
Jallut, C. ;
Maschke, B. .
FUEL CELLS, 2007, 7 (02) :99-117
[8]   Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs [J].
Gasteiger, HA ;
Kocha, SS ;
Sompalli, B ;
Wagner, FT .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2005, 56 (1-2) :9-35
[9]   AC impedance modelling study on porous electrodes of proton exchange membrane fuel cells using an agglomerate model [J].
Gerteisen, Dietmar ;
Hakenjos, Alex ;
Schumacher, Juergen O. .
JOURNAL OF POWER SOURCES, 2007, 173 (01) :346-356
[10]   A steady-state impedance model for a PEMFC cathode [J].
Guo, QZ ;
White, RE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (04) :E133-E149